Skip to main content
Log in

Metamorphism, fluid behavior and magmatism in oceanic subduction zones

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on the updated results of experimental petrology and phase equilibria modelling and combined with the available thermal structure models of subduction zones, this paper presents an overview on the dehydration and melting of basic, sedimentary and ultrabasic rocks that occur in the different stages during oceanic subduction processes and their influences on magmatism above subduction zones. During the subduction at the forearc depth of <90–100 km, the basic and ultrabasic rocks from most oceanic slabs can release very small amounts of water, and significant dehydration may occur in the slab superficial sediments. Strong dehydration occurs in both basic and ultrabasic rocks during subduction at the subarc depth of 90–200 km. For example, more than 90% water in basic rocks is released by the successive dehydration of chlorite, glaucophane, talc and lawsonite in the subarc depths. This is diversely in contrast to the previous results from synthetic experiments. Ultrabasic rocks may undergo strong dehydration through antigorite, chlorite and phase 10 Å at the subarc depth of 120–220 km. However, sediments can contribute minor fluids at the subarc depth, one main hydrous mineral in which is phengite (muscovite). It can stabilize to ∼300 km depth and transform into K-hollandite. After phengite breaks down, there will be no significant fluid release from oceanic slab until it is subducted to the mantle transition zone. In a few hot subduction zones, partial melting (especially flux melting) can occur in both sediments and basic rocks, generating hydrous granitic melts or supercritical fluids, and in carbonates-bearing sediments potassic carbonatite melts can be generated. In a few cold subduction zones, phase A occurs in ultrabasic rocks, which can bring water deep into the transition zone. The subducted rocks, especially the sediments, contain large quantities of incompatible minor and trace elements carried through fluids to greatly influence the geochemical compositions of the magma in subduction zones. As the geothermal gradients of subduction zones cannot cross the solidi of carbonated eclogite and peridotite during the subarc subduction stage, the carbonate minerals in them can be carried into the deep mantle. Carbonated eclogite can melt to generate alkali-rich carbonatite melts at >400 km depth, while carbonated peridotite will not melt in the mantle transition zone below a subduction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agius M R, Rychert C A, Harmon N, Laske G. 2017. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings. Earth Planet Sci Lett, 474: 226–236

    Google Scholar 

  • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

    Google Scholar 

  • Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148

    Google Scholar 

  • Berner R A. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426: 323–326

    Google Scholar 

  • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol, 160: 489–510

    Google Scholar 

  • Dalton J A, Presnall D C. 1998. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol, 131: 123–135

    Google Scholar 

  • Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Google Scholar 

  • Debret B, Bolfan-Casanova N, Padrón-Navarta J A, Martin-Hernandez F, Andreani M, Garrido C J, López Sánchez-Vizcaino V, Gómez-Pugnaire M T, Muñoz M, Trcera N. 2015. Redox state of iron during high-pressure serpentinite dehydration. Contrib Mineral Petrol, 169: 36

    Google Scholar 

  • Diener J F A, Powell R, White R W, Holland T J B. 2007. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol, 25: 631–656

    Google Scholar 

  • Domanik K J, Holloway J R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta, 60: 4133–4150

    Google Scholar 

  • Eggler D H. 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci, 278: 305–343

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, 102: 14991–15019

    Google Scholar 

  • Eiler J M, Carr M J, Reagan M, Stolper E. 2005. Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst, 6: Q07007

    Google Scholar 

  • Falloon T J, Green D H. 1989. The solidus ofcarbonated, fertile peridotite. Earth Planet Sci Lett, 94: 364–370

    Google Scholar 

  • Foley S. 1992. Petrological characterization of the source components of potassic magmas: Geochemical and experimental constraints. Lithos, 28: 187–204

    Google Scholar 

  • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Google Scholar 

  • Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol, 46: 555–578

    Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737

    Google Scholar 

  • Ghent E, Tinkham D, Marr R. 2009. Lawsonite eclogites from the Pinchi Lake area, British Columbia—New P-T estimates and interpretation. Lithos, 109: 248–253

    Google Scholar 

  • Ghosh S, Ohtani E, Litasov K D, Terasaki H. 2009. Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol, 262: 17–28

    Google Scholar 

  • Goes S, Agrusta R, van Hunen J, Garel F. 2017. Subduction-transition zone interaction: A review. Geosphere, 13: 644–664

    Google Scholar 

  • Grassi D, Schmidt M W. 2011a. The melting ofcarbonated pelites from 70 to 700 km depth. J Petrol, 52: 765–789

    Google Scholar 

  • Grassi D, Schmidt M W. 2011b. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191

    Google Scholar 

  • Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Google Scholar 

  • Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol, 34: 845–869

    Google Scholar 

  • Grove T, Chatterjee N, Parman S, Medard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

    Google Scholar 

  • Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N, Mütener O, Gaetani G A. 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145: 515–533

    Google Scholar 

  • Guiraud M, Powell R, Rebay G. 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J Metamorph Geol, 19: 445–454

    Google Scholar 

  • Hammouda T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett, 214: 357–368

    Google Scholar 

  • Hammouda T, Keshav S. 2015. Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem Geol, 418: 171–188

    Google Scholar 

  • Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28: 283–285

    Google Scholar 

  • Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral mag, 74: 189–215

    Google Scholar 

  • Hazen R M, Schiffries C M. 2013. Why deep carbon? Rev Mineral Geochem, 75: 1–6

    Google Scholar 

  • Hermann J F. 2002a. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219–235

    Google Scholar 

  • Hermann J. 2002b. Allanite: Thorium and light rare earth element carrier in subducted crust. Chem Geol, 192: 289–306

    Google Scholar 

  • Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149–168

    Google Scholar 

  • Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Google Scholar 

  • Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42–44

    Google Scholar 

  • Hirose K, Fei Y. 2002. Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. Geochim Cosmochim Acta, 66: 2099–2108

    Google Scholar 

  • Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370

    Google Scholar 

  • Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432

    Google Scholar 

  • Irifune T, Ringwood A E, Hibberson W O. 1994. Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth Planet Sci Lett, 126: 351–368

    Google Scholar 

  • Ishizuka O, Taylor R N, Milton J A, Nesbitt R W, Yuasa M, Sakamoto I. 2006. Variation in the mantle sources of the northern Izu arc with time and space—Constraints from high-precision Pb isotopes. J Volcanol Geotherm Res, 156: 266–290

    Google Scholar 

  • Ito E, Katsura T. 1989. A temperature profile of the mantle transition zone. Geophys Res Lett, 16: 425–428

    Google Scholar 

  • Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186

    Google Scholar 

  • Javoy M. 1997. The major volatile elements of the Earth: Their origin, behavior, and fate. Geophys Res Lett, 24: 177–180

    Google Scholar 

  • Johannes W, Puhan D. 1971. The calcite-aragonite transition, re-investigated. Contr Mineral Petrol, 31: 28–38

    Google Scholar 

  • Katayama I, Nakashima S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am Miner, 88: 229–234

    Google Scholar 

  • Kawamoto T, Holloway J. 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 GPa. Science, 276: 240–243

    Google Scholar 

  • Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem, 4: 749–805

    Google Scholar 

  • Kelemen P B, Rilling J F, Parmentier E M, Mehl L, Hacker B R. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophys Monograph, 138: 293–311

    Google Scholar 

  • Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375–378

    Google Scholar 

  • Kerrick D M, Connolly J A D. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29

    Google Scholar 

  • Keshav S, Gudfinnsson G H. 2013. Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 1.1 to 2 GPa. J Geophys Res-Solid Earth, 118: 3341–3353

    Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett, 237: 873–892

    Google Scholar 

  • Kimura J I, Gill J B, Kunikiyo T, Osaka I, Shimoshioiri Y, Katakuse M, Kakubuchi S, Nagao T, Furuyama K, Kamei A, Kawabata H, Nakajima J, van Keken P E, Stern R J. 2014. Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling. Geochem Geophys Geosyst, 15: 691–739

    Google Scholar 

  • Kiseeva E S, Litasov K D, Yaxley G M, Ohtani E, Kamenetsky V S. 2013. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol, 54: 1555–1583

    Google Scholar 

  • Klimm K, Blundy J D, Green T H. 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 49: 523–553

    Google Scholar 

  • Kohn M J, Castro A E, Kerswell B C, Ranero C R, Spear F S. 2018. Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc Natl Acad Sci USA, 115: 11706–11711

    Google Scholar 

  • Komabayashi T, Omori S, Maruyama S. 2005. Experimental and theoretical study of stability of dense hydrous magnesium silicates in the deep upper mantle. Phys Earth Planet Inter, 153: 191–209

    Google Scholar 

  • Konzett J, Ulmer P. 1999. The Stability of hydrous potassic phases in Lherzolitic Mantle—An experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol, 40: 629–652

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S I. 1968. Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res, 73: 6023–6029

    Google Scholar 

  • Kushiro I. 1970. Stability ofamphibole and phlogopite in the upper mantle. Carnegie Institute of Washington Yearbook, 68: 245–247

    Google Scholar 

  • Kushiro I. 1974. Melting of hydrous upper mantle and possible generation of andesitic magma: An approach from synthetic systems. Earth Planet Sci Lett, 22: 294–299

    Google Scholar 

  • Luth R W. 2001. Experimental determination of the reaction aragonite +magnesite=dolomite at 5 to 9 GPa. Contrib Mineral Petrol, 141: 222–232

    Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Google Scholar 

  • Manning C E. 2014. A piece of the deep carbon puzzle. Nat Geosci, 7: 333–334

    Google Scholar 

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Google Scholar 

  • Martinez I, Zhang J, Reeder R J. 1996. In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: Evidence for dolomite breakdown to aragonite and magnesite. Am Miner, 81: 611–624

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594

    Google Scholar 

  • Maruyama S, Okamoto K. 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res, 11: 148–165

    Google Scholar 

  • McCulloch M T, Gamble J A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374

    Google Scholar 

  • McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett, 233: 337–349

    Google Scholar 

  • Mibe K, Fujii T, Yasuda A. 2002. Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta, 66: 2273–2285

    Google Scholar 

  • Milkov A V. 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol, 167: 29–42

    Google Scholar 

  • Miyashiro A. 1961. Evolution of metamorphic belts. J Petrol, 2: 277–311

    Google Scholar 

  • Miyashiro A. 1994. Metamorphic Petrology. London: University College London Press. 404

    Google Scholar 

  • Molina J F, Poli S. 2000. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett, 176: 295–310

    Google Scholar 

  • Moyen J F, Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. Geophys Monograph, 164: 149–178

    Google Scholar 

  • Ni H W, Zhang L, Xiong X L, Mao Z, Wang J Y. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physico-chemical properties. Earth-Sci Rev, 167: 62–71

    Google Scholar 

  • Nichols G T, Wyllie P J, Stern C R. 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371: 785–788

    Google Scholar 

  • Niida K, Green D H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol, 135: 18–40

    Google Scholar 

  • Novella D, Keshav S, Gudfinnsson G H, Ghosh S. 2014. Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al2O3-SiO2-CO2 and further indication of possible unmixing between carbonatite and silicate liquids. J Geophys Res-Solid Earth, 119: 2780–2800

    Google Scholar 

  • Okamoto K, Maruyama S. 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. Am Miner, 84: 362–373

    Google Scholar 

  • Ono S. 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res, 103: 18253–18267

    Google Scholar 

  • Pawley A R, Wood B J. 1995. The high-pressure stability of talc and 10 Å phase: Potential storage sites for H2O in subduction zones. Am Miner, 80: 998–1003

    Google Scholar 

  • Peacock S M. 1991. Numerical simulation of subduction zone pressure-temperature-time paths: Constraints on fluid production and arc magmatism. Phil Trans R Soc Lond A, 335: 341–353

    Google Scholar 

  • Peacock S M. 1993. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684–694

    Google Scholar 

  • Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from Southwest and Northeast Japan. Science, 286: 937–939

    Google Scholar 

  • Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254

    Google Scholar 

  • Petö P. 1976. An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 kb total pressure. Prog Exp Petrol, 3: 41–45

    Google Scholar 

  • Plank T, Langmuir C H. 1988. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett, 90: 349–370

    Google Scholar 

  • Plank T, Langmuir C H. 1993. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362: 739–743

    Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360

    Google Scholar 

  • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235

    Google Scholar 

  • Rohrbach A, Schmidt M W. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature, 472: 209–212

    Google Scholar 

  • Ryan J G, Morris J, Tera F, Leeman W P, Tsvetkov A. 1995. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science, 270: 625–627

    Google Scholar 

  • Schmidt M W. 1995. Lawsonite; upper pressure stability and formation of higher density hydrous phases. Am Miner, 80: 1286–1292

    Google Scholar 

  • Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927–1930

    Google Scholar 

  • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

    Google Scholar 

  • Schmidt M W, Poli S. 2003. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 3: 567–591

    Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise Geochem, 4: 669–701

    Google Scholar 

  • Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84

    Google Scholar 

  • Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contr Mineral Petrol, 117: 394–409

    Google Scholar 

  • Shaw D M. 1956. Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Geol Soc Am Bull, 67: 919

    Google Scholar 

  • Shcheka S S, Wiedenbeck M, Frost D J, Keppler H. 2006. Carbon solubility in mantle minerals. Earth Planet Sci Lett, 245: 730–742

    Google Scholar 

  • Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C. 2011. Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta, 75: 2237–2255

    Google Scholar 

  • Song S G, Zhang L F, Niu Y, Wei C J, Liou J G, Shu G M. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. J Metamorph Geol, 25: 547–563

    Google Scholar 

  • Smyth J R. 2006. Hydrogen in high pressure silicate and oxide mineral structures. Rev Mineral Geochem, 62: 85–115

    Google Scholar 

  • Stachel T. 2001. Diamonds from the asthenosphere and the transition zone. Eur J Mineral, 13: 883–892

    Google Scholar 

  • Stagno V, Ojwang D O, McCammon C A, Frost D J. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493: 84–88

    Google Scholar 

  • Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in he system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol, 140: 607–618

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Google Scholar 

  • Stevens G, Clemens J D, Droop G T R. 1997. Melt production during granulite-facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol, 128: 352–370

    Google Scholar 

  • Stolper E, Newman S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett, 121: 293–325

    Google Scholar 

  • Sudo A, Tatsumi Y. 1990. Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys Res Lett, 17: 29–32

    Google Scholar 

  • Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Google Scholar 

  • Tatsumi Y. 1986. Formation of the volcanic front in subduction zones. Geophys Res Lett, 13: 717–720

    Google Scholar 

  • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell

    Google Scholar 

  • Tatsumi Y, Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst, 4: 1081

    Google Scholar 

  • Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267

    Google Scholar 

  • Taylor W R, Green D H. 1988. Measurement of reduced peridotite-C-O-H solidus and implications for redox melting of the mantle. Nature, 332: 349–352

    Google Scholar 

  • Theye T, Seidel E, Vidal O. 1992. Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. Eur J Mineral, 4: 487–508

    Google Scholar 

  • Thomson A R, Kohn S C, Bulanova G P, Smith C B, Araujo D, Walter M J. 2014. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contrib Mineral Petrol, 168: 1081

    Google Scholar 

  • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

    Google Scholar 

  • Thomsen T B, Schmidt M W. 2008a. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31

    Google Scholar 

  • Thomsen T B, Schmidt M W. 2008b. The biotite to phengite reaction and mica-dominated melting in fluid+carbonate-saturated pelites at high pressures. J Petrol, 49: 1889–1914

    Google Scholar 

  • Tian Z L, Wei C J. 2013. Metamorphism of ultrahigh-pressure eclogites from the Kebuerte Valley, South Tianshan, NW China: Phase equilibria and P-T path. J Metamorph Geol, 31: 281–300

    Google Scholar 

  • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

    Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Google Scholar 

  • van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport ofwater into the deep mantle. Geochem Geophys Geosyst, 3: 1056

    Google Scholar 

  • van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401

    Google Scholar 

  • van Keken P E, Wada I, Abers G A, Hacker B R, Wang K. 2018. Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem Geophys Geosyst, 19: 2934–2961

    Google Scholar 

  • van Keken P E, Wada I, Sime N, Abers G A. 2019. Thermal structure of the forearc in subduction zones: A comparison of methodologies. Geochem Geophys Geosyst, 92: 3268–3288

    Google Scholar 

  • Vielzeuf D, Schmidt M W. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol, 141: 251–267

    Google Scholar 

  • Walter M J, Bulanova G P, Armstrong L S, Keshav S, Blundy J D, Gudfinnsson G, Lord O T, Lennie A R, Clark S M, Smith C B, Gobbo L. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature, 454: 622–625

    Google Scholar 

  • Wei C J, Clarke G L. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 29: 939–952

    Google Scholar 

  • Wei C J, Duan Z Z. 2019. Phase Relations in metabasic rocks: Constraints from the results of experiments, phase modelling and ACF analysis. Geol Soc Lond Spec Publ, 474: 25–45

    Google Scholar 

  • Wei C J, Guan X, Dong J. 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs (in Chinese with English abstract). Acta Petrol Sin, 33: 1381–1404

    Google Scholar 

  • Wei C J, Li Y J, Yu Y, Zhang J S. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the western Dabieshan terrane, Central China. J Metamorph Geol, 28: 647–666

    Google Scholar 

  • Wei C J, Powell R. 2003. Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contrib Mineral Petrol, 145: 301–315

    Google Scholar 

  • Wei C, Wang W, Clarke G L, Zhang L, Song S. 2009. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. J Petrol, 50: 1973–1991

    Google Scholar 

  • Wei C J, Zhang Y H. 2008. Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma. Chin Sci Bull, 53: 3603–3614

    Google Scholar 

  • White R W, Powell R, Holland T J B. 2001. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Metamorph Geol, 19: 139–153

    Google Scholar 

  • White R W, Powell R, Holland T J B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol, 25: 511–527

    Google Scholar 

  • Winter J D. 2014. Principles of Igneous and Metamorphic Petrology. 2nd ed. New Jersey: Pearson Education. 738

    Google Scholar 

  • Winther K T, Newton R C. 1991. Experimental melting of hydrous low-K tholeiite: Evidence on the origin of Archean cratons. Bull Geol Soc Denmark, 39: 497–515

    Google Scholar 

  • Wood B J, Turner S P. 2009. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth Planet Sci Lett, 283: 59–66

    Google Scholar 

  • Wunder B. 1998. Equilibrium experiments in the system MgO-SiO2-H2O (MSH): Stability fields of clinohumite-OH [Mg9Si4O16(OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A (Mg7Si2O8(OH)6). Contrib Mineral Petrol, 132: 111–120

    Google Scholar 

  • Wyllie P J. 1978. Mantle fluid compositions buffered in peridotite-CO2-H2 O by carbonates, amphibole, and phlogopite. J Geol, 86: 687–713

    Google Scholar 

  • Wyllie P J. 1981. Plate tectonics and magma genesis. Geol Rundsch, 70: 128–153

    Google Scholar 

  • Wyllie P J, Huang W L. 1975. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature, 257: 297–299

    Google Scholar 

  • Wyllie P J, Wolf M B. 1993. Amphibolite dehydration-melting: Sorting out the solidus. Geol Soc Lond Spec Publ, 76: 405–416

    Google Scholar 

  • Xu C, Kynický J, Tao R, Liu X, Zhang L, Pohanka M, Song W, Fei Y. 2017. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci Adv, 3: e1601589

    Google Scholar 

  • Xu C, Kynický J, Song W, Tao R, Lü Z, Li Y, Yang Y, Pohanka M, Galiova M V, Zhang L, Fei Y. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nat Commun, 9: 2790

    Google Scholar 

  • Xu Y, Li H, Hong L, Ma L, Ma Q, Sun M. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci China Earth Sci, 61: 869–886

    Google Scholar 

  • Yasuda A, Fujii T, Kurita K. 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res, 99: 9401–9414

    Google Scholar 

  • Yaxley G M, Green D H. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett, 128: 313–325

    Google Scholar 

  • Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics. Gondwana Res, 11: 120–131

    Google Scholar 

  • Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782

    Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planet Space, 66: 93

    Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Google Scholar 

  • Zhu R, Xu Y. 2019. The subduction of the west Pacific plate and the destruction of the North China Craton. Sci China Earth Sci, 62: 1340–1350

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2015CB856105) and the National Natural Science Foundation of China (Grant No. 41872057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjing Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Zheng, Y. Metamorphism, fluid behavior and magmatism in oceanic subduction zones. Sci. China Earth Sci. 63, 52–77 (2020). https://doi.org/10.1007/s11430-019-9482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9482-y

Keywords

Navigation