Skip to main content
Log in

Fault-tolerant authenticated quantum dialogue using logical Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two fault-tolerant authenticated quantum dialogue protocols are proposed in this paper by employing logical Bell states as the quantum resource, which combat the collective-dephasing noise and the collective-rotation noise, respectively. The two proposed protocols each can accomplish the mutual identity authentication and the dialogue between two participants simultaneously and securely over one kind of collective noise channels. In each of two proposed protocols, the information transmitted through the classical channel is assumed to be eavesdroppable and modifiable. The key for choosing the measurement bases of sample logical qubits is pre-shared privately between two participants. The Bell state measurements rather than the four-qubit joint measurements are adopted for decoding. The two participants share the initial states of message logical Bell states with resort to the direct transmission of auxiliary logical Bell states so that the information leakage problem is avoided. The impersonation attack, the man-in-the-middle attack, the modification attack and the Trojan horse attacks from Eve all are detectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

  2. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

  4. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

  5. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

  6. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  7. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Article  ADS  Google Scholar 

  8. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quant. Inform. 6(4), 899–906 (2008)

    Article  MATH  Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)

  10. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  11. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30–37 (2013)

    Article  ADS  Google Scholar 

  12. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block (2004) http://arxiv.org/pdf/quant-ph/0403215.pdf

  14. Zhang, Z.J., Man, Z.X.: Secure bidirectional quantum communication protocol without quantum channel (2004). http://arxiv.org/pdf/quant-ph/0403217.pdf

  15. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)

    Article  ADS  Google Scholar 

  16. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  17. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  18. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  19. Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)

    Article  MATH  ADS  Google Scholar 

  22. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G Phys. Mech. Astron. 50(5), 558–562 (2007)

    Article  ADS  Google Scholar 

  23. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23(27), 3225–3234 (2009)

    Article  MATH  ADS  Google Scholar 

  24. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

  25. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys. Lett. A 372(18), 3333–3336 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)

    Article  ADS  Google Scholar 

  27. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inform. 6(2), 325–329 (2008)

    Article  Google Scholar 

  28. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  29. Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  30. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  31. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  32. Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled\_not operations. J. Mod. Opt. 57(20), 2027–2030 (2010)

    Article  ADS  Google Scholar 

  33. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quant. Inform. 11(5), 1350051 (2013)

    Article  Google Scholar 

  34. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89(1), 015103 (2014)

  35. Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  36. Ye, T.Y.: Quantum dialogue without information leakage using a single quantum entangled state. Int. J. Theor. Phys. 53(11), 3719–3727 (2014)

    Article  MATH  Google Scholar 

  37. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  38. Ye, T.Y.: Secure quantum dialogue via cavity QED. Int. J. Theor. Phys. 54(3), 772–779 (2015)

    Article  Google Scholar 

  39. Naseri, M.: An efficient protocol for quantum secure dialogue with authentication by using single photons. Int. J. Quant. Inf. 9(7–8), 1677–1684 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shen, D.S., Ma, W.P., Yin, X.R., Li, X.P.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lin, T.H., Lin, C.Y., Hwang, T.: Man-in-the-Middle Attack on “Quantum dialogue with authentication based on Bell states”. Int. J. Theor. Phys. 52(9), 3199–3203 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lin, C.Y., Yang, C.W., Hwang, T.: Authenticated quantum dialogue based on Bell states. Int. J. Theor. Phys. 54(3), 780–786 (2015)

    Article  Google Scholar 

  43. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

  44. Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quant. Inform. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  45. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

  46. Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

  47. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361, 233–238 (2006)

    Article  ADS  Google Scholar 

  48. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1913–1918 (2009)

    Article  ADS  Google Scholar 

  49. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)

    Article  ADS  Google Scholar 

  50. Yang, C.W., TSAI, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  51. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  52. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12, 1089–1107 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 57(12), 2266–2275 (2014)

    Article  ADS  Google Scholar 

  55. Ye, T.Y.: Robust quantum dialogue based on logical qubits and controlled-not operations. Sci. Sin. Phys. Mech. Astron. 45(3), 030301 (2015). (In chinese)

  56. Ye, T.Y.: Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise. Sci. Sin. Phys. Mech. Astron. 45(4), 040301 (2015). (In chinese)

  57. Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 040301(2015)

  58. Ye, T.Y.: Fault tolerant quantum dialogue without information leakage based on entanglement swapping between two logical Bell states. Commun. Theor. Phys. 63(4), 431–438 (2015)

    Article  ADS  Google Scholar 

  59. Ye, T.Y.: Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf. Process. 14(4), 1469–1486 (2015)

    Article  ADS  Google Scholar 

  60. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)

    Article  ADS  Google Scholar 

  61. Ye, T.Y.: Robust quantum dialogue based on the measurement correlation of three-qubit entangled states over collective-noise channels. Sci. Sin. Phys. Mech. Astron. 45(5), 050301 (2015). (In chinese)

  62. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  63. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  MATH  ADS  Google Scholar 

  64. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  65. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168

  66. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

  67. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  68. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357–368 (2002)

    ADS  Google Scholar 

  69. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  70. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  71. Li, X.H., Deng, F.G., Li, C.Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    MathSciNet  Google Scholar 

  72. Xiu, X.M., Dong, H.K., Dong, L., et al.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282, 2457–2459 (2009)

    Article  ADS  Google Scholar 

  73. Qin, S.J., Wen, Q.Y., Lin, S., et al.: Cryptanalysis and improvement of a DSQC using four-particle entangled state and entanglement swapping. Opt. Commun. 282, 4017–4019 (2009)

    Article  ADS  Google Scholar 

  74. Xiu, X.M., Dong, L., Gao, Y.J., et al.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333–337 (2009)

    Article  ADS  Google Scholar 

  75. Qin, S.J., Wen, Q.Y., Meng, L.M., et al.: Comment on “Controlled DSQC using five-qubit entangled states and two-step security test”. Opt. Commun. 282, 2656–2658 (2009)

    Article  ADS  Google Scholar 

  76. Xiu, X.M., Dong, L., Gao, Y.J., et al.: A revised controlled deterministic secure quantum communication with five-photon entangled state. Opt. Commun. 283, 344–347 (2010)

    Article  ADS  Google Scholar 

  77. Wang, C., Liu, J.W., Liu, X., et al.: A novel deterministic secure quantum communication scheme with Einstein–Podolsky–Rosen pairs and single photons. Commun. Theor. Phys. 60, 397–404 (2013)

    Article  MATH  ADS  Google Scholar 

  78. Yuan, H., Zhang, Q., Hong, L., et al.: Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int. J. Theor. Phys. 53, 2558–2564 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  79. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE Press, Bangalore, pp. 175–179 (1984)

  80. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  81. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  82. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  83. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable suggestions that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant Nos. 61402407, 11375152) is also gratefully acknowledged.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY. Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf Process 14, 3499–3514 (2015). https://doi.org/10.1007/s11128-015-1040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1040-y

Keywords

Navigation