Skip to main content
Log in

Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

From the perspective of information theory and cryptography, the security of two quantum dialogue protocols and a bidirectional quantum secure direct communication (QSDC) protocol was analyzed, and it was pointed out that the transmitted information would be partly leaked out in them. That is, any eavesdropper can elicit some information about the secrets from the public annunciations of the legal users. This phenomenon should have been strictly forbidden in a quantum secure communication. In fact, this problem exists in quite a few recent proposals and, therefore, it deserves more research attention in the following related study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  2. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984. 175–179

  3. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Google Scholar 

  6. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Google Scholar 

  7. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Google Scholar 

  8. Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501

    Google Scholar 

  9. Hoffmann H, Bostroem K, Felbinger T. Comment on “Secure direct communication with a quantum one-time pad”. Phys Rev A, 2005, 72: 016301

    Google Scholar 

  10. Deng F G, Long G L. Reply to “Comment on ’secure direct communication with a quantum one-time pad’”. Phys Rev A, 2005, 72: 016302

    Google Scholar 

  11. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  ADS  MathSciNet  Google Scholar 

  12. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6–10

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Zhang Y S, Li C F, Guo G C. Comment on “Quantum key distribution without alternative measurements”. Phys Rev A, 2001, 63: 036301

    Google Scholar 

  14. Wójcik A. Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

    Google Scholar 

  15. Wójcik A. Comment on “Quantum dense key distribution”. Phys Rev A, 2005, 71: 016301

    Google Scholar 

  16. Gao F, Guo F Z, Wen Q Y, et al. Comment on “Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers”. Phys Rev A, 2005, 72: 036302

    Google Scholar 

  17. Gao F, Guo F Z, Wen Q Y, et al. Comment on “Quantum key distribution for d-level systems with generalized Bell states”. Phys Rev A, 2005, 72: 066301

    Google Scholar 

  18. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Google Scholar 

  19. Lo H K, Ko T M. Some attacks on quantum-based cryptographic protocols. Quantum Inf Comput, 2005, 5: 40–47

    MathSciNet  Google Scholar 

  20. Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101–103

    Article  ADS  Google Scholar 

  21. Gao F, Wen Q Y, Zhu F C. Comment on “Quantum exam”. Phys Lett A, 2007, 360: 748–750

    Article  ADS  Google Scholar 

  22. Gao F, Qin S J, Wen Q Y, et al. A simple participant attack on the Brádler-Dušek protocol. Quantum Inf Comput, 2007, 7: 329–334

    MathSciNet  Google Scholar 

  23. Zhang Z J, Liu J, Wang D, et al. Comment on “Quantum direct communication with authentication”. Phys Rev A, 2007, 75: 026301

    Google Scholar 

  24. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  25. Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B: At Mol Opt Phys, 2006, 39: 3855–3863

    Article  ADS  Google Scholar 

  27. Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  ADS  Google Scholar 

  28. Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15: 1418–1420

    Article  ADS  Google Scholar 

  29. Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23: 1680–1682

    Article  ADS  Google Scholar 

  30. Xia Y, Fu C B, Zhang S, et al. Quantum dialogue by using the GHZ state. J Korean Phys Soc, 2006, 48: 24–27

    Google Scholar 

  31. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  32. Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24: 15–18

    Article  ADS  Google Scholar 

  33. Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19–22

    Article  MATH  ADS  Google Scholar 

  34. Gao F, Guo F Z, Wen Q Y, et al. On the information-splitting essence of two types of quantum key distribution protocols. Phys Lett A, 2006, 355: 172–175

    Article  ADS  Google Scholar 

  35. Shannon C E. Communication theory of secrecy system. Bell Syst Tech J, 1949, 28: 656–715

    MathSciNet  Google Scholar 

  36. Gao F, Qin S J, Wen Q Y, et al. One-time pads cannot be used to improve the efficiency of quantum communication. Phys Lett A, 2007, 365: 386–388

    Article  ADS  Google Scholar 

  37. Tan Y, Cai Q. Classical correlation in quantum dialogue. arXiv:0802.0358

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Additional information

Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA01Z419), the National Natural Science Foundation of China (Grant Nos. 90604023 and 60373059), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), the Natural Science Foundation of Beijing (Grant No. 4072020) and the ISN Open Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Guo, F., Wen, Q. et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G-Phys. Mech. As 51, 559–566 (2008). https://doi.org/10.1007/s11433-008-0065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0065-y

Keywords

Navigation