Skip to main content
Log in

Quasi-secure quantum dialogue using single photons

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A quasi-secure quantum dialogue protocol using single photons was proposed. Different from the previous entanglement-based protocols, the present protocol uses batches of single photons which run back and forth between the two parties. A round run for each photon makes the two parties each obtain a classical bit of information. So the efficiency of information transmission can be increased. The present scheme is practical and well within the present-day technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984. 175–179

    Google Scholar 

  2. Ekert A. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–664

    Article  MATH  ADS  Google Scholar 

  3. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  ADS  Google Scholar 

  4. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Google Scholar 

  5. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Google Scholar 

  6. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Google Scholar 

  7. Shimizu K, Imoto N. Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys Rev A, 2000, 62: 054303

    Google Scholar 

  8. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Google Scholar 

  9. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Google Scholar 

  10. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

    Google Scholar 

  11. Cao H J, Song H S. Quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 290–292

    Article  ADS  Google Scholar 

  12. Li X H, Zhou P, Liang Y J, et al. Quantum secure direct communication network with two-step protocol. Chin Phys Lett, 2006, 23: 1080–1083

    Article  ADS  Google Scholar 

  13. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Google Scholar 

  14. Lee H, Lim J, Yang H. Quantum direct communication with authentication. Phys Rev A, 2006, 73: 042305

    Google Scholar 

  15. Beige A, Englert B-G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–363

    ADS  Google Scholar 

  16. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  17. Cai Q Y. A one-time-pad key communication protocol with entanglement. Arxiv: quant-ph/0309108

  18. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    Google Scholar 

  19. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6–10

    Article  ADS  Google Scholar 

  20. Wójcik A. Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

    Google Scholar 

  21. Zhang Z J, Man Z X, Li Y. Improving Wójcik’s eavesdropping attack on the ping-pong protocol. Phys Lett A, 2004, 333: 46–50

    Article  ADS  Google Scholar 

  22. Zhang Z J. Deterministic secure direct bidirectional communication protocol. arxiv: quant-ph/0403186

  23. Zhang Z J, Man Z X. Secure bidirectional quantum communication protocol without quantum channel. Arxiv: quant-ph/0403217

  24. Zhang Z J, Man Z X. Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. Arxiv: quant-ph/0403215

  25. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  26. Man Z X. The ‘quantum dialogue’ can be eavesdropped under the intercept-and-resend attack. arxiv: quant-ph/0406230

  27. Xia Y, Fu C B, Zhang S. Quantum dialogue by using the GHZ state. Arxiv: quant-ph/0601127

  28. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang YuGuang.

Additional information

Supported by the National Hi-Tech Research and Development Program of China (Grant No. 2006AA01Z419), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601) and the Open Foundation of the State Key Laboratory of Information Security, Graduate University of the Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wen, Q. Quasi-secure quantum dialogue using single photons. SCI CHINA SER G 50, 558–562 (2007). https://doi.org/10.1007/s11433-007-0057-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-007-0057-3

Keywords

Navigation