Skip to main content
Log in

Deterministic secure quantum communication over a collective-noise channel

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present two deterministic secure quantum communication schemes over a collective-noise. One is used to complete the secure quantum communication against a collective-rotation noise and the other is used against a collective-dephasing noise. The two parties of quantum communication can exploit the correlation of their subsystems to check eavesdropping efficiently. Although the sender should prepare a sequence of three-photon entangled states for accomplishing secure communication against a collective noise, the two parties need only single-photon measurements, rather than Bell-state measurements, which will make our schemes convenient in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassadrd G. Quantum cryptography: Publickey distribution and coin tossing. In: Proceedings of IEEE Inter national Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984. 175–179

    Google Scholar 

  2. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  3. Wen H, Han Z F, Zhao Y B, et al. Multiple stochastic paths scheme on partially-trusted relay quantum key distribution network. Sci China Ser F-Inf Sci, 2009, 52(1): 18–22

    Article  MathSciNet  Google Scholar 

  4. Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chin Sci Bull, 2009, 54(1): 158–162

    Article  Google Scholar 

  5. Zhang L B, Zhong Y Y, Kang L, et al. Detection of infrared photons with a superconductor. Chin Sci Bull, 2009, 54(12): 2150–2153

    Article  Google Scholar 

  6. Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chin Sci Bull, 2008, 53(9): 1310–1314

    Article  Google Scholar 

  7. Li C Y, Li X H, Deng F G, et al. Complete multiple round quantum dense coding with quantum logical network. Chin Sci Bull, 2007, 52(9): 1162–1165

    Article  Google Scholar 

  8. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  9. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  10. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  11. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  MathSciNet  ADS  Google Scholar 

  12. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Article  MathSciNet  ADS  Google Scholar 

  13. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  14. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 012304

    Article  ADS  Google Scholar 

  15. Deng F G, Li X H, Li C Y, et al. Multiparty quantumstate sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301

    Article  ADS  Google Scholar 

  16. Deng F G, Li C Y, Li Y S, et al. Symmetry multipartycontrolled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  17. Deng F G, Li X H, Li C Y, et al. Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur Phys J D, 2006, 39: 459–464

    Article  ADS  Google Scholar 

  18. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B, 2006, 39: 1975–1983

    Article  ADS  Google Scholar 

  19. Wang Z Y, Yuan H, Shi S H, et al. Three-party qutrit-state sharing. Euro Phys J D, 2007, 41: 371–375

    Article  MathSciNet  ADS  Google Scholar 

  20. Man Z X, Xia Y J, An N B. Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Euro Phys J D, 2007, 42: 333–340

    Article  MathSciNet  ADS  Google Scholar 

  21. Zhang Y Q, Jin X R, Zhang S. Secret sharing of quantum information via entanglement swapping. Chin Phys, 2006, 15: 2252–2255

    Article  ADS  Google Scholar 

  22. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  23. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  24. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  25. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21(4): 601–603

    Article  ADS  Google Scholar 

  27. Cai Q Y, Li B W. Improving the capacity of the Bostroem-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  28. Wang C, Deng F G, Li Y S, et al. Quantum secret direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  29. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  30. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  ADS  Google Scholar 

  31. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  32. Qin S J, Wen Q Y, Meng L M, et al. Quantum secure direct communication over collective amplitude damping channel. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1208–1212

    Article  ADS  Google Scholar 

  33. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368

    ADS  Google Scholar 

  34. Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  MathSciNet  ADS  Google Scholar 

  35. Gao T, Yan F L, Wang Z X. Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo Cimento Della Societa Italiana Di Fisica B, 2004, 119: 313–318

    ADS  Google Scholar 

  36. Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J Phys A, 2005, 38: 5761–5770

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Gao T, Yan F L, Wang Z X. Quantum secure conditional direct communication via EPR pairs. Int J Mod Phys C, 2005, 16(8): 1293–1301

    Article  MATH  ADS  Google Scholar 

  38. Gao T, Yan F L, Wang Z X. Controlled quantum teleportation and secure direct communication. Chin Phys, 2005, 14: 893–897

    Article  ADS  Google Scholar 

  39. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21

    Article  ADS  Google Scholar 

  40. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

    Article  ADS  Google Scholar 

  41. Cao H J, Song H S. Quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 290–292

    Article  ADS  Google Scholar 

  42. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  43. Qin S J, Wen Q Y, Meng L M, et al. Quantum secure direct communication over the collective amplitude damping channel. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1208–1212

    Article  ADS  Google Scholar 

  44. Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559–566

    Article  ADS  Google Scholar 

  45. Yang Y G, Wen Q Y. Threshold quantum secure direct communication without entanglement Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183

    MATH  Google Scholar 

  46. Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 558–562

    Article  ADS  Google Scholar 

  47. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2(3): 251–272

    Article  ADS  Google Scholar 

  48. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  49. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  ADS  Google Scholar 

  50. Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101

    Article  ADS  Google Scholar 

  51. Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901

    Article  ADS  Google Scholar 

  52. Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collectivenoise channel. Phys Rev Lett, 2004, 92: 017901

    Article  ADS  Google Scholar 

  53. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  54. Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum dense coding with collective noise. arXiv:0904.0056

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10847147) and the Science Foundation of Nanjing University of Information Science & Technology (Grant No. 20080279)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, B., Pei, S., Song, B. et al. Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G-Phys. Mech. Astron. 52, 1913–1918 (2009). https://doi.org/10.1007/s11433-009-0303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0303-y

Keywords

Navigation