Skip to main content
Log in

Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver’s secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve’s active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  2. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  5. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  6. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  7. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Article  ADS  Google Scholar 

  8. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6, 899–906 (2008)

    Article  MATH  Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  10. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  11. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30–37 (2013)

    Article  ADS  Google Scholar 

  12. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. http://arxiv.org/pdf/quant-ph/0403215.pdf (2004)

  14. Zhang, Z.J., Man, Z.X.: Secure bidirectional quantum communication protocol without quantum channel. http://arxiv.org/pdf/quant-ph/0403217.pdf (2004)

  15. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)

    Article  ADS  Google Scholar 

  16. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  17. Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  18. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  19. Man, Z.X., Xia, Y.J., Nguyen, B.A.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)

    Article  ADS  MATH  Google Scholar 

  22. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China. Ser. G Phys. Mech. Astron. 50(5), 558–562 (2007)

    Article  ADS  Google Scholar 

  23. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23(27), 3225–3234 (2009)

    Article  ADS  MATH  Google Scholar 

  24. Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  25. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys. Lett. A 372(18), 3333–3336 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)

    Article  ADS  Google Scholar 

  27. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6(2), 325–329 (2008)

    Article  Google Scholar 

  28. Shi, G.F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  29. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  30. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  31. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  32. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum Inf. 11(5), 1350051 (2013)

    Article  MathSciNet  Google Scholar 

  33. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89(1), 015103 (2014)

    Article  ADS  Google Scholar 

  34. Ye, T.Y.: Quantum secure dialogue with quantum encryption. Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  ADS  Google Scholar 

  35. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China-Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  36. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  37. Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  38. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  39. Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  40. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361, 233–238 (2006)

    Article  ADS  Google Scholar 

  41. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1913–1918 (2009)

    Article  ADS  Google Scholar 

  42. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283, 3099–3103 (2010)

    Article  ADS  Google Scholar 

  43. Yang, C.W., TSAI, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  44. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  45. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131–2142 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12, 1089–1107 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Ye, T.Y.: Information leakage resistant quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 57(12), 2266–2275 (2014)

    Article  ADS  Google Scholar 

  48. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)

    Article  ADS  Google Scholar 

  49. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)

    Article  ADS  Google Scholar 

  50. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  51. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  52. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  53. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable suggestions that help enhancing the quality of this paper. Funding by the National Natural Science Foundation of China (Grant Nos. 61402407, 11375152) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY. Robust quantum dialogue based on the entanglement swapping between any two logical Bell states and the shared auxiliary logical Bell state. Quantum Inf Process 14, 1469–1486 (2015). https://doi.org/10.1007/s11128-015-0934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0934-z

Keywords

Navigation