Skip to main content
Log in

Quantum secure direct dialogue over collective noise channels based on logical Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme for quantum secure direct dialogue protocols, which is adapted to both collective-dephasing noise and collective-rotation noise, is proposed in this paper by using the logical Bell states as the traveling states to resist collective noise. All logical Bell states are used to transmit secret messages from either of two participants except those used for security checks. Each of the logical Bell states used for transmitting secret messages can carry two classical bits. Bell state measurements rather than four-qubit joint measurements are used for decoding. The two participants can accomplish the direct dialogue without any additional classical communication for decoding. The information leakage problem is avoided with resort to the two-step transmission, the ping-pong transmission and the absence of classical communication for the encoded quantum states. The two participants can speak to each other either simultaneously or sequentially. Furthermore, the two participants can transmit secret messages of different lengths to each other in one round communication. The proposed scheme is so flexible that it is much alike the practical conversation in real life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, G.L., Liu, X.S.: Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  2. Bostrom, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L.: Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  5. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  6. Wang, C., Deng, F.G., Long, G.L.: Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  7. Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Chin. Phys. 16(8), 2149–2153 (2007)

    Article  ADS  Google Scholar 

  8. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Int. J. Quant. Inf. 6, 899 (2008)

    Article  MATH  Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  10. Liu, D., Chen, J.L., Jiang, W.: Int. J. Theor. Phys. 51, 2923 (2012)

    Article  MATH  Google Scholar 

  11. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  12. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Acta Phys. Pol. A 101, 357–368 (2002)

    ADS  Google Scholar 

  13. Yan, F.L., Zhang, X.Q.: Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  14. Man, Z.X., Zhang, Z.J., Li, Y.: Chin. Phys. Lett. 22, 18–21 (2005)

    Article  ADS  Google Scholar 

  15. Li, X.H., Deng, F.G., Li, C.Y., et al.: J. Korean Phys. Soc. 49, 1354–1359 (2006)

    MathSciNet  Google Scholar 

  16. Xiu, X.M., Dong, H.K., Dong, L., et al.: Opt. Commun. 282, 2457–2459 (2009)

    Article  ADS  Google Scholar 

  17. Qin, S.J., Wen, Q.Y., Lin, S., et al.: Opt. Commun. 282, 4017–4019 (2009)

    Article  ADS  Google Scholar 

  18. Xiu, X.M., Dong, L., Gao, Y.J., et al.: Opt. Commun. 282, 333–337 (2009)

    Article  ADS  Google Scholar 

  19. Qin, S.J., Wen, Q.Y., Meng, L.M., et al.: Opt. Commun. 282, 2656–2658 (2009)

    Article  ADS  Google Scholar 

  20. Xiu, X.M., Dong, L., Gao, Y.J., et al.: Opt. Commun. 283, 344–347 (2010)

    Article  ADS  Google Scholar 

  21. Wang, C., Liu, J.W., Liu, X., et al.: Commun. Theor. Phys. 60, 397–404 (2013)

    Article  ADS  MATH  Google Scholar 

  22. Yuan, H., Zhang, Q., Hong, L., et al.: Int. J. Theor. Phys. 53, 2558–2564 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nguyen, B.A.: Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Zhang, Z.J., Man, Z.X.: http://arxiv.org/pdf/quant-ph/0403215.pdf (2004)

  25. Zhang, Z.J., Man, Z.X.: http://arxiv.org/pdf/quant-ph/0403217.pdf (2004)

  26. Man, Z.X., Zhang, Z.J., Li, Y.: Chin. Phys. Lett. 22(1), 22–24 (2005)

    Article  ADS  Google Scholar 

  27. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., et al.: Phys. Lett. A 354(1–2), 67–70 (2006)

    Article  ADS  Google Scholar 

  28. Man, Z.X., Xia, Y.J.: Chin. Phys. Lett. 23(7), 1680–1682 (2006)

    Article  ADS  Google Scholar 

  29. Ji, X., Zhang, S.: Chin. Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  30. Man, Z.X., Xia, Y.J., Nguyen, B.A.: J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)

    Article  ADS  Google Scholar 

  31. Man, Z.X., Xia, Y.J.: Chin. Phys. Lett. 24(1), 15–18 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chen, Y., Man, Z.X., Xia, Y.J.: Chin. Phys. Lett. 24(1), 19–22 (2007)

    Article  ADS  MATH  Google Scholar 

  33. Yang, Y.G., Wen, Q.Y.: Sci. China Ser. G. Phys. Mech. Astron. 50(5), 558–562 (2007)

    Article  ADS  Google Scholar 

  34. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Mod. Phys. Lett. B 23(27), 3225–3234 (2009)

    Article  ADS  MATH  Google Scholar 

  35. Ye, T.Y., Jiang, L.Z.: Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  36. Shi, G.F.: Opt. Commun. 283(24), 5275–5278 (2010)

    Article  ADS  Google Scholar 

  37. Gao, G.: Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  38. Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Opt. Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  39. Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Opt. Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  40. Ye, T.Y.: Int. J. Quant. Inf. 11(5), 1350051 (2013)

    Article  Google Scholar 

  41. Ye, T.Y., Jiang, L.Z.: Phys. Scr. 89(1), 015103 (2014)

    Article  ADS  Google Scholar 

  42. Ye, T.Y.: Commun. Theor. Phys. 62(3), 338–342 (2014)

    Article  ADS  Google Scholar 

  43. Ye, T.Y.: Int. J. Theor. Phys. 53(11), 3719–3727 (2014)

    Article  MATH  Google Scholar 

  44. Zheng, C., Long, G.F.: Sci. China Phys. Mech. Astron. 57(7), 1238–1243 (2014)

    Article  ADS  Google Scholar 

  45. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Phys. Lett. A 372(18), 3333–3336 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Sci. China Ser. G Phys. Mech. Astron. 51(5), 559–566 (2008)

    Article  ADS  Google Scholar 

  47. Tan, Y.G., Cai, Q.Y.: Int. J. Quant. Inf. 6(2), 325–329 (2008)

    Article  Google Scholar 

  48. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  49. Li, X.H., Zhao, B.K., Sheng, Y.B., et al.: Int. J. Quant. Inf. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  50. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  51. Boileau, J.C., Gottesman, D., Laflamme, R., et al.: Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  52. Zhang, Z.J.: Phys. A 361, 233–238 (2006)

    Article  ADS  Google Scholar 

  53. Gu, B., Pei, S.X., Song, B., Zhong, K.: Sci. China Ser. G Phys. Mech. Astron. 52(12), 1913–1918 (2009)

    Article  ADS  Google Scholar 

  54. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Opt. Commun. 283, 3099–3103 (2010)

    Article  ADS  Google Scholar 

  55. Yang, C.W., TSAI, C.W., Hwang, T.: Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  56. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  57. Yang, C.W., Hwang, T.: Quantum Inf. Process 12, 2131–2142 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Lin, J., Hwang, T.: Quantum Inf. Process 12, 1089–1107 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Ye, T.Y.: Sci. China Phys. Mech. Astron. 57(12), 2266–2275 (2014)

    Article  ADS  Google Scholar 

  60. Ye, T.Y.: Sci. Sin. Phys. Mech. Astron. doi:10.1360/SSPMA2014-00289 (In chinese, in press)

  61. Cai, Q.Y.: Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  62. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  63. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  64. Cabello, A.: Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding by the National Natural Science Foundation of China (Grant Nos. 61402407, 11375152) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, TY. Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf Process 14, 1487–1499 (2015). https://doi.org/10.1007/s11128-015-0919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0919-y

Keywords

Navigation