Skip to main content
Log in

Information leakage resistant quantum dialogue against collective noise

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, two information leakage resistant quantum dialogue (QD) protocols over a collective-noise channel are proposed. Decoherence-free subspace (DFS) is used to erase the influence from two kinds of collective noise, i.e., collective-dephasing noise and collective-rotation noise, where each logical qubit is composed of two physical qubits and free from noise. In each of the two proposed protocols, the secret messages are encoded on the initial logical qubits via two composite unitary operations. Moreover, the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding, making the two proposed protocols easier to implement. The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart. Consequently, the information leakage problem is avoided in the two proposed protocols. Moreover, the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome, such as the Trojan horse attack, the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the correlation-elicitation (CE) attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers. Systems and Signal Processing. Bangalore: IEEE Press, 1984. 175–179

    Google Scholar 

  2. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635–5638

    Article  ADS  Google Scholar 

  4. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368

    ADS  Google Scholar 

  5. Li C Y, Li X H, Deng F G, et al. Efficient quantum secure communication with a publicly known key. Chin Phys B, 2008, 17(7): 2352–2355

    Article  ADS  Google Scholar 

  6. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  7. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  8. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  9. Cai Q Y, Li B W. Improving the capacity of the Boström-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  10. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21(4): 601–603

    Article  ADS  Google Scholar 

  11. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  12. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  13. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253(1–3): 15–20; Wang C, Deng F G, Long G L. Erratum to “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state”. Opt Commun, 2006, 262 (1): 134

    Article  ADS  Google Scholar 

  14. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16 (8): 2149–2153

    ADS  Google Scholar 

  15. Chen X B, Wang T Y, Du J Z, Wen Q Y, Zhu F C. Controlled quantum secure direct communication with quantum encryption. Int J Quant Inform, 2008, 6 (3): 543–551

    Article  Google Scholar 

  16. Chen X B, Wen Q Y, Guo F Z, et al. Controlled quantum secure direct communication with W state. Int J Quant Inform, 2008, 6 (4): 899–906

    Article  Google Scholar 

  17. Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28 (4): 040305

    Article  Google Scholar 

  18. Gu B, Huang Y G, Fang X, et al. Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun Theor Phys, 2011, 56 (4): 659–663

    Article  ADS  Google Scholar 

  19. Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20(10): 100309

    Article  ADS  Google Scholar 

  20. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54(5): 942–947

    Article  ADS  Google Scholar 

  21. Shi J, Gong Y X, Xu P, et al. Quantum secure direct communication by using three-dimensional hyperentanglement. Commun Theor Phys, 2011, 56(5): 831–836

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Gao G, Fang M, Yang R M. Quantum secure direct communication by swapping entanglements of 3×3-dimensional Bell states. Int J Theor Phys, 2011, 50: 882–887

    Article  MATH  MathSciNet  Google Scholar 

  23. Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946–1952

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923–2929

    Article  MATH  Google Scholar 

  25. Tsai C W, Hwang T. Deterministic quantum communication using the symmetric W state. Sci China-Phys Mech Astron, 2013, 56(10): 1903–1908

    Article  ADS  Google Scholar 

  26. Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30–37

    Article  ADS  Google Scholar 

  27. Zhang Z J, Man Z X. Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv:quant-ph/0403215

  28. Zhang Z J, Man Z X. Secure bidirectional quantum communication protocol without quantum channel. arXiv:quant-ph/0403217

  29. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328(1): 6–10

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22(1): 22–24

    Article  ADS  Google Scholar 

  31. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354(1–2): 67–70

    Article  ADS  Google Scholar 

  32. Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23(7): 1680–1682

    Article  ADS  Google Scholar 

  33. Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15(7): 1418–1420

    Article  ADS  Google Scholar 

  34. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39(18): 3855–3863

    Article  ADS  Google Scholar 

  35. Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24(1): 15–18

    Article  ADS  MathSciNet  Google Scholar 

  36. Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24(1): 19–22

    Article  ADS  MATH  Google Scholar 

  37. Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 558–562

    Article  ADS  Google Scholar 

  38. Shan C J, Liu J B, Cheng W W, et al. Bidirectional quantum secure direct communication in driven cavity QED. Mod Phys Lett B, 2009, 23(27): 3225–3234

    Article  ADS  MATH  Google Scholar 

  39. Ye T Y, Jiang L Z. Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin Phys Lett, 2013, 30(4): 040305

    Article  ADS  Google Scholar 

  40. Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. Int J Quant Inform, 2008, 6(2): 325–329

    Article  Google Scholar 

  41. Gao F, Qin S J, Wen Q Y, et al. Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys Lett A, 2008, 372(18): 3333–3336

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559–566

    Article  ADS  Google Scholar 

  43. Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282(12): 2460–2463

    Article  ADS  Google Scholar 

  44. Shi G F, Xi X Q, Hu M L, et al. Quantum secure dialogue by using single photons. Opt Commun, 2010, 283(9): 1984–1986

    Article  ADS  Google Scholar 

  45. Shi G F. Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun, 2010, 283(24): 5275–5278

    Article  ADS  Google Scholar 

  46. Gao G. Two quantum dialogue protocols without information leakage. Opt Commun, 2010, 283(10): 2288–2293

    Article  ADS  Google Scholar 

  47. Ye T Y. Large payload bidirectional quantum secure direct communication without information leakage. Int J Quant Inform, 2013, 11(5): 1350051

    Article  Google Scholar 

  48. Ye T Y, Jiang L Z. Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys Scr, 2014, 89(1): 015103

    Article  ADS  Google Scholar 

  49. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  ADS  Google Scholar 

  50. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  51. Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101

    Article  ADS  Google Scholar 

  52. Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901

    Article  ADS  Google Scholar 

  53. Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901

    Article  ADS  Google Scholar 

  54. Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A, 2006, 361: 233–238

    Article  ADS  Google Scholar 

  55. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  56. Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quant Inform, 2009, 7(8): 1479–1489

    Article  MATH  Google Scholar 

  57. Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1913–1918

    Article  ADS  Google Scholar 

  58. Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54(3): 496–501

    Article  ADS  Google Scholar 

  59. Yang C W, Hwang T. Quantum dialogue protocols immune to collective noise. Quantum Inf Process, 2013, 12: 2131–2142

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22(5): 1049–1052

    Article  ADS  MathSciNet  Google Scholar 

  61. Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23(11): 2896–2899

    Article  ADS  MathSciNet  Google Scholar 

  62. Shannon C E. Communication theory of secrecy system. Bell System Tech J, 1949, 28: 656–715

    Article  MATH  MathSciNet  Google Scholar 

  63. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351(1–2): 23–25

    Article  ADS  MATH  Google Scholar 

  64. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1): 145–195

    Article  ADS  Google Scholar 

  65. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  66. Gao F, Wen Q Y, Zhu F C. Comment on “Quantum exam”. Phys Lett A, 2007, 360: 748–750

    Article  ADS  Google Scholar 

  67. Qin S J, Wen Q Y, Zhu F C. An external attack on the Bradler Dusek protocol. J Phys B-At Mol Opt Phys, 2007, 40: 4661–4664

    Article  ADS  Google Scholar 

  68. Gao F, Lin S, Wen Q Y, et al. A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin Phys Lett, 2008, 25(5): 1561–1563

    Article  ADS  Google Scholar 

  69. Qin S J, Gao F, Wen Q Y, et al. Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt Commun, 2009, 282: 4014–4016

    Article  ADS  Google Scholar 

  70. Gao F, Qin S J, Wen Q Y, et al. Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt Commun, 2010, 283: 192–195

    Article  ADS  Google Scholar 

  71. Qin S J, Gao F, Guo F Z, et al. Comment on “Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair”. Phys Rev A, 2010, 82: 036301

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianYu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T. Information leakage resistant quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 57, 2266–2275 (2014). https://doi.org/10.1007/s11433-014-5566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5566-2

Keywords

Navigation