Skip to main content
Log in

Comparative Genomics and Functional Characterisation of the GIGANTEA Gene from the Temperate Forage Perennial Ryegrass Lolium perenne

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Lolium perenne (ryegrass) is a perennial forage grass of worldwide importance. It is a temperate climate grass and flowering is induced by long day photoperiods. The agronomic productivity of ryegrass is strongly influenced by flowering time, but less is known about ryegrass flowering time regulators in other temperate Poaceae like wheat, barley and the model grass Brachypodium. The GIGANTEA (GI) gene was first identified in Arabidopsis and is an important regulator of photoperiodic flowering in angiosperms. GI usually exists as a conserved, single-copy gene. However, recently, genome sequencing has revealed that some plants, including the tropical grass maize, carry more than one full-length copy of GI. Here we describe the isolation and characterisation of the ryegrass L. perenne GIGANTEA gene (LpGI) gene. Comparative genomic analysis indicates that LpGI gene structure is very well conserved overall with GI genes from monocots and eudicots. LpGI protein clusters with GI proteins from other temperate grasses and is most closely related to the GI protein from meadow fescue. Genetic mapping locates LpGI to a chromosomal region that is syntenic with rice and Brachypodium GI. Our functional characterisation shows that LpGI shows a diurnal pattern of expression, continues to oscillate under constant light and adjusts its phase in response to changes in day length as seen in other plants. Constitutive expression of LpGI completely rescues the Arabidopsis gigantea-3 allele (gi-3) mutation, confirming that the isolated ryegrass gene is fully functional. Taken together, it is highly likely that LpGI is orthologous to Arabidopsis GI and involved in photoperiodic flowering time control in ryegrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aamlid TS, Heide OM, Boelt B (2000) Primary and secondary induction requirements for flowering of contrasting European varieties of Lolium Perenne. Ann Bot 86:1087–1095

    Article  Google Scholar 

  • Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60:481–494

    Article  CAS  PubMed  Google Scholar 

  • Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F2 and BC1-type mapping populations in perennial ryegrass. Plant Breed 121:501–507

    Article  CAS  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Skøt L, Turner LB, Skøt K, Donnison IS, Humphreys MO, King IP (2005) Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167:239–247

    Article  CAS  PubMed  Google Scholar 

  • Barre P, Moreau L, Mi F, Turner LB, Gastal F, Julier B, Ghesquière M (2009) Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass Forage Sci 64:310–321

    Article  CAS  Google Scholar 

  • Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG (2013) The circadian clock-associated gene GIGANTEA1 affects maize developmental transitions. Plant Cell Environ 36:1379–1390

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Stockum C, Dickson JM, Putterill J, Arcus VL (2011) Expression, purification and characterisation of GIGANTEA: a circadian clock-controlled regulator of photoperiodic flowering in plants. Protein Expr Purif 76:197–204

    Article  CAS  PubMed  Google Scholar 

  • Brock MT, Tiffin P, Weinig C (2007) Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thaliana. Mol Ecol 16:3050–3062

    Article  CAS  PubMed  Google Scholar 

  • Byrne S, Guiney E, Barth S, Donnison I, Mur L, Milbourne D (2009) Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166:61–70

    Article  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Jiang S, Zhang R (2006) The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul 48:261–270

    Article  CAS  Google Scholar 

  • Ciannamea S, Busscher-Lange J, De Folter S, Angenent GC, Immink RGH (2006) Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol 47:481–492

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Gonçalves JM, Webb AAR (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A 108:5104–5109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Martin AP, Andriunas F, Offler CE, Patrick JW, McCurdy DW (2010) GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. Plant J 63:651–661

    Article  CAS  PubMed  Google Scholar 

  • Eimert K, Wang S, Lue W, Chen J (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7:1703–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  CAS  PubMed  Google Scholar 

  • Faville M, Jahufer M, Hume D, Cooper B, Pennell C, Ryan D, Easton H (2012) A quantitative trait locus analysis of herbage biomass production in perennial ryegrass. N Z J Agric Res 55:263–281

    Article  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006) A framework linkage map of perennial ryegrass based on SSR markers. Genome 49:354–364

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Zhang X, Wang YF, Ming F (2013) The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS ONE 8

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. Plos One, p e10065

  • Hong SY, Lee S, Seo PJ, Yang MS, Park CM (2010) Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Mol Biol 72:485–497

    Article  CAS  PubMed  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A 97:9789–9794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano AJ, Motoyama R, Sawada Y, Yano M, Hirai MY, Makino A, Nagamura Y (2011) Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 23:1741–1755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Seo YH, Pil JS, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung C-H, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Geng RS, Gallenstein RA, Somers DE (2013a) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140:4060–4069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ (2013b) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352. doi:10.1038/ncomms2357

    Article  PubMed  Google Scholar 

  • Kim Y, Han S, Yeom M, Kim H, Lim J, Cha JY, Kim WY, Somers DE, Putterill J, Nam HG, Hwang D (2013c) Balanced nucleocytosolic partitioning defines a spatial network to coordinate circadian physiology in plants. Dev Cell 26:73–85

    Article  CAS  PubMed  Google Scholar 

  • King J, Thomas A, James C, King I, Armstead I (2013) A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis. BMC Genomics 14

  • Kurepa J, Smalle J, Van Montagu M, Inze D (1998) Effects of sucrose supply on growth and paraquat tolerance of the late-flowering gi-3 mutant. Plant Growth Regul 26:91–96

    Article  CAS  Google Scholar 

  • Langdon T, Thomas A, Huang L, Farrar K, King J, Armstead I (2009) Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne. BMC Plant Biol. 9

  • Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56:159–169

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tryon E, Kreps J, Harmer S (2007) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143:473–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza J, Bendix C, Meeley R, Harmon FG (2012) The homeologous Zea mays gigantea genes: characterization of expression and novel mutant alleles. Maydica 57:252–259

    Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and plant circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144:495–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeifer M, Martis M, Asp T, Mayer KF, Lubberstedt T, Byrne S, Frei U, Studer B (2013) The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. Plant Physiol 161:571–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of CONSTANS1. Plant Physiol 162:1706–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A 106:14908–14913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sartie A, Matthew C, Easton H, Faville M (2011) Phenotypic and QTL analyses of herbage production-related traits in perennial ryegrass (Lolium perenne L.). Euphytica 182:295–315

    Article  Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci 108:11698–11703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sim ST, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    Article  PubMed Central  PubMed  Google Scholar 

  • Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155:1013–1022

    Article  PubMed Central  PubMed  Google Scholar 

  • Studer B, Jensen L, Hentrup S, Brazauskas G, Kolliker R, Lubberstedt T (2008) Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:781–791

    Article  PubMed  Google Scholar 

  • Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lubberstedt T, Asp T (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 13:140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the gigantea gene is involved in soybean maturity and flowering. Genetics 188:395–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agric Sci 140:129–150

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J-W, Rubio V, Lee N-Y, Bai S, Lee S-Y, Kim S-S, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek N-C, Deng XW (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Liu M, Li J, Guan C, Zhang X (2005) The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol 58:53–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Roger Moraga Martinez for the help and advice regarding sequence analysis. The help of Tash Forester during the sample collection is gratefully acknowledged. The research was funded by the New Zealand Foundation for Research Science and Technology (www.msi.govt.nz/) contract numbers C10X0816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Putterill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagic, M., Faville, M., Kardailsky, I. et al. Comparative Genomics and Functional Characterisation of the GIGANTEA Gene from the Temperate Forage Perennial Ryegrass Lolium perenne . Plant Mol Biol Rep 33, 1098–1106 (2015). https://doi.org/10.1007/s11105-014-0820-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0820-3

Keywords

Navigation