Skip to main content
Log in

Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Photoperiod and vernalization are the two key environmental factors of the floral induction of perennial ryegrass (Lolium perenneL.). Transition from vegetative to reproductive growth will only occur after an extended vernalization period, followed by an increase in day length and temperature. Here we report on the isolation and characterization of a L. perennegene (LpCO) that is homologous to CONSTANS, and which is tightly coupled to the floral inductive long day signal. Like other monocot CO-like proteins, the LpCO contains a zinc finger domain with a non-conserved B-Box2. Although the B-Box2 has been demonstrated to be essential for the function of the ArabidopsisCO (AtCO), LpCO is able to complement the Arabidopsis co-2 mutant, and ectopic expression in Arabidopsis wild type leads to early flowering. The LpCO transcript exhibits diurnal oscillations and is expressed at higher levels during long days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamlid, T.S., Heide, O.M. and Boelt, B. 2000. Primary and secondary induction requirements for flowering of contrasting European varieties of Loliumperenne. Ann. Bot. 86: 1087-1095.

    Google Scholar 

  • Bernier, G. 1988. The control of floral evocation and Morphogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 175-219.

    Google Scholar 

  • Borden, K.L.B. 1998. RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem. Cell Biol.-Biochim. Biol. Cell. 76: 351-358.

    Google Scholar 

  • Cao, T.Y., Duprez, E., Borden, K.L.B., Freemont, P.S. and Etkin, L.D. 1998. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J. Cell Sci. 111: 1319-1329.

    PubMed  Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.

    PubMed  Google Scholar 

  • Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Coupland, G. and Putterill, J. 1999. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18: 4679-4688.

    PubMed  Google Scholar 

  • Gocal, G.F.W., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H. and Weigel, D. 2001. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125: 1788-1801.

    PubMed  Google Scholar 

  • Griffiths, S., Dunford, R.P., Coupland, G. and Laurie, D.A. 2003. The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol. 131: 1855-1867.

    PubMed  Google Scholar 

  • Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422: 719-722.

    PubMed  Google Scholar 

  • Heide, O.M. 1994. Control of flowering and reproduction in temperate grasses. New Phytol. 128: 347-362.

    Google Scholar 

  • Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M. and Shimamoto, K. 2002. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16: 2006-2020.

    PubMed  Google Scholar 

  • Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. 1999. Activation tagging of the floral inducer FT. Science 286: 1962-1965.

    PubMed  Google Scholar 

  • Karimi, M., Inze, D. and Depicker, A. 2002. GATE-WAY((TM)) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193-195.

    PubMed  Google Scholar 

  • Kurup, S., Jones, H.D. and Holdsworth, M.J. 2000. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 21: 143-155.

    PubMed  Google Scholar 

  • Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M. and Lee, I. 2000. The AGAMOUS-LIKE 20 MADSdomain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14: 2366-2376.

    PubMed  Google Scholar 

  • Liu, J.Y., Yu, J.P., McIntosh, L., Kende, H. and Zeevaart, J.A.D. 2001. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol. 125: 1821-1830.

    PubMed  Google Scholar 

  • Muller, P.Y., Janovjak, H., Miserez, A.R. and Dobbie, Z. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372-1378.

    PubMed  Google Scholar 

  • Nemoto, Y., Kisaka, M., Fuse, T., Yano, M. and Ogihara, Y. 2003. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 36: 82-93.

    PubMed  Google Scholar 

  • Oneill, S.D. 1992. The photoperiodic control of flowering-Progress toward understanding the mechanism of induction. Photochem Photobiol 56: 789-801.

    Google Scholar 

  • Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K. and Coupland, G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.

    PubMed  Google Scholar 

  • Petersen, K., Didion, T., Andersen, C.H. and Nielsen, K.K. 2004. MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J. Plant Physiol. 161: 439-447.

    PubMed  Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. 1995. The constans gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-nger transcription factors. Cell 80: 847-857.

    PubMed  Google Scholar 

  • Robert, L.S., Robson, F., Sharpe, A., Lydiate, D. and Coupland, G. 1998. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. Biol. 37: 763-772.

    PubMed  Google Scholar 

  • Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J. and Coupland, G. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28: 619-631.

    PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method-A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    PubMed  Google Scholar 

  • Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.

    PubMed  Google Scholar 

  • Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120.

    PubMed  Google Scholar 

  • Torok, M. and Etkin, L.D. 2001. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67: 63-71.

    PubMed  Google Scholar 

  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006.

    PubMed  Google Scholar 

  • Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Nat. Acad. Sci. U S A. 100: 6263-6268.

    Google Scholar 

  • Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. and Sasaki, T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473-2483.

    PubMed  Google Scholar 

  • Yanovsky, M.J. and Kay, S.A. 2002. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312.

    PubMed  Google Scholar 

  • Yuceer, C., Harkess, RL., Land, SB. and Luthe, D.S. 2002. Structure and developmental regulation of CONSTANS-LIKE genes isolated from Populus deltoides. Plant Sci. 163: 615-625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J., Storgaard, M., Andersen, C.H. et al. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56, 159–169 (2004). https://doi.org/10.1007/s11103-004-2647-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-2647-z

Navigation