Skip to main content
Log in

The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Wheat (Triticum aestivum L.) is an important crop and requires long day and short night to flower. To study the molecular mechanism of photoperiodic regulation of flowering in this species, we isolated a wheat TaGI1 gene, an ortholog of GIGANTEA (GI) in Arabidopsis. RNA blot hybridization revealed that TaGI1 is expressed in leaves in a rhythmic manner under long day and short day conditions and its rhythmic expression is regulated by photoperiods and circadian clocks. Further study demonstrated that the TaGI1 rhythmic expression in the leaves of seedlings is initiated by photoperiods, implying that TaGI1 does not show circadian regulation until after being entrained in a light/dark cycle. Interestingly, TaGI1 mRNA was detected in adaxial epidermal cells right above the vascular bundles of leaves, suggesting that the localization of TaGI1 transcripts in leaves may function to regulate flowering in response to photoperiods. Since overexpression of TaGI1 altered flowering time in wild type and complemented the gi mutant in Arabidopsis, it confirmed that TaGI1 is an ortholog of GI in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. An C. Roussot P. Suárez-López L. Corbesier C. Vincent M. Piñeiro S. Hepworth A. Mouradov S. Justin C. Turnbull G. Coupland (2004) ArticleTitleCONSTANS acts in the phloem to regulate a systemic signal that induce photoperiodic flowering of Arabidopsis Development 131 3615–3626

    Google Scholar 

  • T. Araki Y. Komeda (1993) ArticleTitleAnalysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana Plant J 3 231–239

    Google Scholar 

  • P.K. Boss R.M. Bastow J.S. Mylne C. Dean (2004) ArticleTitleMultiple pathways in the decision to flower: enabling, promoting, and resetting Plant Cell 16 S18–S31

    Google Scholar 

  • S.J. Clough A.F. Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J 16 735–743

    Google Scholar 

  • J. Colasanti Z. Yuan V. Sundaresan (1998) ArticleTitleThe indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize Cell 93 593–603

    Google Scholar 

  • I.S. Curtis H.G. Nam J.Y. Yun K.H. Seo (2002) ArticleTitleExpression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering Transgenic Res 11 249–256

    Google Scholar 

  • M.E. Eriksson A.J. Millar (2003) ArticleTitleThe circadian clock. a plant’s best friend in a spinning world Plant Physiol 132 732–738

    Google Scholar 

  • C. Fankhauser D. Staiger (2002) ArticleTitlePhotoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock Planta 216 1–16

    Google Scholar 

  • S. Fowler K. Lee H. Onouchi A. Samach K. Richardson B. Morris G. Coupland J. Putterill (1999) ArticleTitleGIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains EMBO J 18 4679–4688

    Google Scholar 

  • R. Hayama T. Izawa K. Shimamoto (2002) ArticleTitleIsolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method Plant Cell Physiol 43 494–504

    Google Scholar 

  • R. Hayama S. Yokoi S. Tamaki M. Yano K. Shimamoto (2003) ArticleTitleAdaptation of photoperiodic control pathways produces short-day flowering in rice Nature 422 719–722

    Google Scholar 

  • S.R. Hepworth F. Valverde D. Ravenscroft A. Mouradov G. Coupland (2002) ArticleTitleAntagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promotor motifs EMBO J 21 4327–4337

    Google Scholar 

  • E. Huq J.M. Tepperman P.H. Quail (2000) ArticleTitleGIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis Proc. Natl. Acad. Sci. USA 97 9789–9794

    Google Scholar 

  • Y. Kobayashi H. Kaya K. Goto M. Iwabuchi T. Araki (1999) ArticleTitleA pair of related genes with antagonistic roles in mediating flowering signals Science 286 1960–1962

    Google Scholar 

  • Y. Komeda (2004) ArticleTitleGenetic regulation of time to flower in Arabidopsis thaliana Annu. Rev. Plant Biol 55 521–535

    Google Scholar 

  • M. Koornneef C.J. Hanhart J.H. Veen Particlevan der (1991) ArticleTitleA genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana Mol. Gen. Genet 229 57–66

    Google Scholar 

  • D.A. Laurie (1997) ArticleTitleComparative genetics of flowering time Plant Mol. Biol 35 167–177

    Google Scholar 

  • Y.Y. Levy C. Dean (1998) ArticleTitleThe transition to flowering Plant Cell 10 1973–1989

    Google Scholar 

  • J.R. Li F. Wang X.Y. Zhao Y.X. Dong L.Y. Zhang B.Y. An X.S. Zhang (2004) ArticleTitleAnalysis of seed-expressed sequence tags in Triticum aestivum Acta. Bot. Sin 46 363–370

    Google Scholar 

  • S.D. Michaels R.M. Amasino (2000) ArticleTitleMemories of winter vernalization and the competence to flower Plant Cell Environ 23 1145–1153

    Google Scholar 

  • A.J. Millar I.A. Carre C.A. Strayer N.H. Chua S.A. Kay (1995) ArticleTitleCircadian clock mutants in Arabidopsis identified by luciferase imaging Science 267 1161–1163

    Google Scholar 

  • A. Mouradov F. Cremer G. Coupland (2002) ArticleTitleControl of flowering time: Interacting pathways as a basis for diversity Plant Cell 14 IssueIDSuppl S111–S130

    Google Scholar 

  • Y. Nemoto M. Kisaka T. Fuse M. Yano OgiharaY (2003) ArticleTitleCharacterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice Plant J 36 82–93

    Google Scholar 

  • D.H. Park D.E. Somers Y.S. Kim Y.H. Choy H.K. Lim M.S. Soh H.J. Kim S.A. Kay H.G. Nam (1999) ArticleTitleControl of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA Gene Science 285 1579–1582

    Google Scholar 

  • P.H. Reeves G. Coupland (2000) ArticleTitleResponse of plant development to environment: Control of flowering by daylength and temperature Curr. Opin. Plant Biol 3 37–42

    Google Scholar 

  • L.C. Roden H.-R. Song S. Jackson K. Morris I.A. Carre (2002) ArticleTitleFloral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis Proc. Natl. Acad. Sci. USA 99 13313–13318

    Google Scholar 

  • A. Samach H. Onouchi S.E. Gold G.S. Ditta Z. Schwarz-Sommer M.F. Yanofsky G. Coupland (2000) ArticleTitleDistinct roles of CONSTANS target genes in reproductive development of Arabidopsis Science 288 1613–1616

    Google Scholar 

  • J. Sambrook E.F. Fritsch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual EditionNumber2 Cold Spring Harbor Laboratory Press New York

    Google Scholar 

  • R. Schaffer N. Ramsay A. Samach S. Corden J. Putterill I.A. Carré G. Coupland (1998) ArticleTitleThe late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering Cell 93 1219–1229

    Google Scholar 

  • M. Schmid N.H. Uhlenhaut F. Godard M. Demar R. Bressan D. Weigel J.U. Lohmann (2003) ArticleTitleDissection of floral induction pathways using global expression analysis Development 130 6001–6012

    Google Scholar 

  • G.G. Simpson C. Dean (2002) ArticleTitleArabidopsis, the Rosetta stone of flowering time? Science 296 285–289

    Google Scholar 

  • D. Staiger K. Apel (1999) ArticleTitleCircadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterization of a minimal promoter element Mol. Gen. Genet 261 811–819

    Google Scholar 

  • P. Suárez-López K. Wheatley F. Robson H. Onouchi F. Valverde G. Coupland (2001) ArticleTitleCONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis Nature 410 1116–1120

    Google Scholar 

  • S. Takada K. Goto (2003) ArticleTitleTERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time Plant Cell 15 2856–2865

    Google Scholar 

  • B. Thomas D. Vince-Prue (1997) Photoperiodism in Plants Academic Press London

    Google Scholar 

  • F. Valverde A. Mouradov W. Soppe D. Ravenscroft A. Samach G. Coupland (2004) ArticleTitlePhotoreceptor regulation of CONSTANS protein in photoperiodic flowering Science 303 1003–1006

    Google Scholar 

  • Z.-Y. Wang E.M. Tobin (1998) ArticleTitleConstitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression Cell 93 1207–1217

    Google Scholar 

  • T. Yamamoto Y. Kuboki S.Y. Lin T. Sasaki M. Yano (1998) ArticleTitleFine mapping of quantitative trait loci, Hd-1, Hd-2, and Hd-3, controlling heading date of rice, as single Mendedian factors Theor. Appl. Genet 97 37–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Sheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X.Y., Liu, M.S., Li, J.R. et al. The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant Mol Biol 58, 53–64 (2005). https://doi.org/10.1007/s11103-005-4162-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-4162-2

Keywords

Navigation