Skip to main content
Log in

Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Developmental phase change and flowering transition are emerging as potential targets for biomass agriculture in recent years. The GIGANTEA (GI) gene is one of the central regulators that direct flowering promotion and phase transition. In this work, we isolated a GI gene orthologue from the small annual grass Brachypodium distachyon inbred line Bd21 (Brachypodium), which is perceived as a potential model monocot for studies on bioenergy grass species. A partial GI gene sequence was identified from a Brachypodium expressed sequence tag library, and a full-size gene (BdGI) was amplified from a Brachypodium cDNA library using specific primer sets designed through analysis of monocot GI gene sequences. The BdGI gene was up-regulated by light and cold. A circadian rhythm set by light–dark transition also regulated the expression of the BdGI gene. The deduced amino acid sequence of the BdGI protein shares higher than 70% of sequence identity with the GI proteins in monocots and Arabidopsis. In addition, the BdGI protein is constitutively targeted to the nucleus and physically interacts with the ZEITLUPE (ZTL) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) proteins, like the Arabidopsis GI protein. Interestingly, heterologous expression of the BdGI gene in a GI-deficient Arabidopsis mutant rescued efficiently the late flowering phenotype. Together, our data indicate that the role of the GI gene in flowering induction is conserved in Arabidopsis and Brachypodium. It is envisioned that the GI genes of bioenergy grasses as well as Brachypodium could be manipulated to improve biomass by engineering developmental timing of phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CO:

CONSTANS

COP1:

CONSTITUTIVE PHOTOMORPHOGENIC 1

EST:

Expressed sequence tag

FKF1:

FLAVIN-BINDING, KELCH REPEAT, F-BOX 1

FT:

FLOWERING LOCUS T

GI:

GIGANTEA

LD:

Long day

NLS:

Nuclear localization signal

qRT-PCR:

Quantitative real-time RT-PCR

RT-PCR:

Reverse transcription-PCR

SD:

Short day

SPY:

SPINDLY

TFL1:

Terminal flower 1

ZFN:

Zinc finger nuclease

ZT:

Zeitgeber time

ZTL:

ZEITLUPE

References

  • Abe M, Fujiwara M, Kurotani K, Yokoi S, Shimamoto K (2008) Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol 49:420–432

    Article  CAS  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Komeda Y (1993) Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J 3:231–239

    Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterization of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Hasterok R, Marasek A, Donnison IS, Armstead I, Thomas A, King IP, Wolny E, Idziak D, Draper J, Jenkins G (2006) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–362

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol 144:648–661

    Article  CAS  PubMed  Google Scholar 

  • Hicks GR, Raikhel NV (1995) Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol 11:155–188

    Article  CAS  PubMed  Google Scholar 

  • Hong SY, Seo PJ, Yang MS, Xiang F, Park CM (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    Article  CAS  PubMed  Google Scholar 

  • Jans DA, Hübner S (1996) Regulation of protein transport to the nucleus: central role of phosphorylation. Physiol Rev 76:651–685

    CAS  PubMed  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  CAS  PubMed  Google Scholar 

  • Laurie D, Griffiths S, Dunford R, Christodoulou V, Taylor S, Cockram J, Beales J, Turner A (2004) Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Res 90:87–99

    Article  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tryon EL, Kreps JA, Harmer SL (2007) GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143:473–486

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    Article  CAS  PubMed  Google Scholar 

  • Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144:495–502

    Article  CAS  PubMed  Google Scholar 

  • Olsen P, Lenk I, Jensen CS, Petersen K, Andersen CH, Didiona T, Nielsen KK (2006) Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant Sci 170:1020–1025

    Article  CAS  Google Scholar 

  • Paltiel J, Amin R, Gover A, Ori N, Samach A (2006) Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula. Planta 224:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    Article  CAS  PubMed  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162:711–717

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fitsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Buchert M, Hovens CM (1996) An in vitro assay of beta-galactosidase from yeast. Biotechniques 20:960–962

    CAS  PubMed  Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  PubMed  Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in Barley. In: Nilan RA (ed) Barley genetics II. Proceedings of the second international barley genetics symposium. Washington State University Press, Pullman, WA

    Google Scholar 

  • Thole V, Alves SC, Worland B, Bevan MW, Vain P (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nat Protoc 4:650–661

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  Google Scholar 

  • Tseng TS, Salomé PA, McClung CR, Olszewski NE (2004) SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16:1550–1563

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Bragg J (2009) Brachypodium distachyon, a new model for the Triticeae. In: Feuillet C, Muehlbauer G (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 427–449

    Chapter  Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21–3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Leong OM, Hayden DM (2006a) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tissue Organ Cult 85:199–211

    Google Scholar 

  • Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, Donze TJ, Vivian LA, Stamova B, Coleman-Derr D (2006b) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  CAS  PubMed  Google Scholar 

  • Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng XW (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630

    Article  CAS  PubMed  Google Scholar 

  • Zerr DM, Hall JC, Rosbash M, Siwicki KK (1990) Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci 10:2749–2762

    CAS  PubMed  Google Scholar 

  • Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005) The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol 58:53–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Inhwan Hwang for providing the p326-GFP vector, Dr. Jong-Seong Jeon for the pJJ461 vector. We also thank Ms. Kyung-A Ryu (Department of Biological Sciences, Seoul National University) for her help with confocal microscopic analysis. This work was supported by the Brain Korea 21, Biogreen 21 (20080401034001), and National Research Laboratory Programs and by grants from the Plant Signaling Network Research Center, the Korea Science and Engineering Foundation (2007-03415), and from the Agricultural R & D Promotion Center (309017-5), Korea Ministry for Food, Agriculture, Forestry and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Mo Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Supplementary material 2 (PPT 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SY., Lee, S., Seo, P.J. et al. Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Mol Biol 72, 485–497 (2010). https://doi.org/10.1007/s11103-009-9586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9586-7

Keywords

Navigation