Skip to main content
Log in

Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A novel computational approach for the dynamic analysis of a large scale rigid–flexible multibody system composed of composite laminated plates is proposed. The rigid parts in the system are described through the Natural Coordinate Formulation (NCF) and the flexible bodies in the system are modeled via the finite elements of Absolute Nodal Coordinate Formulation (ANCF), which can lead to a constant mass matrix for the derived system equation of motion. For modeling composite laminated plates accurately, a new composite laminated plate element of ANCF is proposed and the corresponding efficient formulations for evaluating both the elastic force and its Jacobian of the element are derived from the first Piola–Kirchhoff stress tensor. To improve computational efficiency, the sparse matrix technology and graph theory are used to solve the huge set of linear algebraic equations in the process of integrating the equations of motion by using the generalized-a method, and an OpenMP based parallel scheme is also introduced. Finally, the effectiveness of the proposed approach is validated through two numerical examples. One is the static simulation of a single composite laminated plate under gravity and the other is the dynamic simulations of unfolding process of a satellite system with a pair of complicated antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabana, A.A.: Flexible multibody dynamics review of past and recent development. Multibody Syst. Dyn. 1, 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical report. No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  3. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. J. Mech. Des. 122, 498–507 (2000)

    Article  Google Scholar 

  4. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  5. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    Article  MATH  Google Scholar 

  6. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 287–306 (2008)

    Article  MathSciNet  Google Scholar 

  7. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  8. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2009)

    Article  Google Scholar 

  9. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)

    Article  Google Scholar 

  10. He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009)

    Article  MATH  Google Scholar 

  11. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mikkolaa, A.M., Shabana, A.A.: Non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  Google Scholar 

  13. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 345–355 (2005)

    Google Scholar 

  14. Gruttmann, F., Wagner, W., Meyer, L., Wriggers, P.: A nonlinear composite shell element with continuous interlaminar shear stresses. Comput. Mech. 13, 175–188 (1993)

    Article  MATH  Google Scholar 

  15. Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993)

    Article  MATH  Google Scholar 

  16. Kremer, J.M., Shabana, A.A., Widera, G.E.O.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993)

    Article  MATH  Google Scholar 

  17. Madenci, E., Barut, A.: Dynamic response of thin composite shells experiencing nonlinear elastic deformances coupling with large and rapid overall motions. Int. J. Numer. Methods Eng. 39, 2695–2723 (1996)

    Article  MATH  Google Scholar 

  18. Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Flexible multibody systems models using composite materials components. Multibody Syst. Dyn. 12, 385–405 (2004)

    Article  MATH  Google Scholar 

  19. Neto, M.A., Ambrosio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 195, 6860–6873 (2005)

    Article  Google Scholar 

  20. Ambrosio, J.A.C., Neto, M.A., Leal, R.P.: Optimization of a complex flexible multibody systems with composite materials. Multibody Syst. Dyn. 18, 117–144 (2007)

    Article  MATH  Google Scholar 

  21. Garcia-Callejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  Google Scholar 

  22. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: Proceedings of the Multibody Dynamics Eccomas thematic Conference, Madrid (2005)

    Google Scholar 

  23. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  24. Bischof, C.H., Bucker, H.M., Naumann, U., Hovland, P., Utke, J.: Advances in Automatic Differentiation. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  25. García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994)

    Google Scholar 

  26. García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid–flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  29. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  30. Shabana, A.A.: Computational Dynamics. Wiley, Singapore (2010)

    Book  MATH  Google Scholar 

  31. Lim, J.H., Yim, H.J., Lim, S.H., Park, T.: A study on numerical solution method for efficient dynamic analysis of constrained multibody systems. J. Mech. Sci. Technol. 22, 714–721 (2008)

    Article  Google Scholar 

  32. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  33. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of 24th National Conference ACM, pp. 157–172 (1969)

    Chapter  Google Scholar 

  34. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education, Boston (2004)

    Google Scholar 

  35. Wriggers, P., Boersma, A.: A parallel algebraic multigrid solver for problems in solid mechanics discretisized by finite elements. Comput. Struct. 69, 129–137 (1998)

    Article  MATH  Google Scholar 

  36. Duan, S., Anderson, K.S.: Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system. Eng. Comput. 16, 96–108 (2000)

    Article  MATH  Google Scholar 

  37. Malczyk, P., Fraczek, J.: Cluster computing of mechanisms dynamics using recursive formulation. Multibody Syst. Dyn. 20, 177–196 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Bauchau, O.A.: Parallel computation approaches for flexible multibody dynamic simulations. J. Franklin Inst. 347, 53–68 (2010)

    Article  MathSciNet  Google Scholar 

  39. Gonzalez, F., Luaces, A., Lugris, U., Gonzalez, M.: Non-intrusive parallelization of multibody system dynamic simulations. Comput. Mech. 44, 493–504 (2009)

    Article  MATH  Google Scholar 

  40. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  41. Kollar, L.P., Spriner, G.S.: Mechanics of Composite Structures. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  42. Arnold, M., Brüls, O.: Convergence of the generalized-a scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  44. Chung, J., Hulbert, G.: A time integer algorithm for structure dynamics with improved numerical dissipation: The generalized-a method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Hermanns, M.: Parallel programming in Fortran 95 using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)

  46. Anantharaman, M.: The dynamic analysis of flexible mechanisms using finite element methods. Dissertation, University of Stuttgart (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Tian, Q. & Hu, H. Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Syst Dyn 26, 283–305 (2011). https://doi.org/10.1007/s11044-011-9256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9256-9

Keywords

Navigation