Skip to main content
Log in

Optimization of a complex flexible multibody systems with composite materials

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The paper presents a general optimization methodology for flexible multibody systems which is demonstrated to find optimal layouts of fiber composite structures components. The goal of the optimization process is to minimize the structural deformation and, simultaneously, to fulfill a set of multidisciplinary constraints, by finding the optimal values for the fiber orientation of composite structures. In this work, a general formulation for the computation of the first order analytical sensitivities based on the use of automatic differentiation tools is applied. A critical overview on the use of the sensitivities obtained by automatic differentiation against analytical sensitivities derived and implemented by hand is made with the purpose of identifying shortcomings and proposing solutions. The equations of motion and sensitivities of the flexible multibody system are solved simultaneously being the accelerations and velocities of the system and the sensitivities of the accelerations and of the velocities integrated in time using a multi-step multi-order integration algorithm. Then, the optimal design of the flexible multibody system is formulated to minimize the deformation energy of the system subjected to a set of technological and functional constraints. The methodologies proposed are first discussed for a simple demonstrative example and applied after to the optimization of a complex flexible multibody system, represented by a satellite antenna that is unfolded from its launching configuration to its functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  2. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures, vol. 2: Advanced Topics. Wiley, Chichester (1997)

    MATH  Google Scholar 

  3. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  4. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  5. Ambrósio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)

    Article  MATH  Google Scholar 

  6. Ambrósio, J., Kleiber, M. (eds.): Computational Aspects of Nonlinear Structural Systems With Large Rigid Body Motion. IOS, Amsterdam (2001)

    Google Scholar 

  7. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)

    Google Scholar 

  8. Ambrósio, J., Gonçalves, J.: Complex flexible multibody systems with application to vehicle dynamics. Multibody Syst. Dyn. 6(2), 163–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10, 139–151 (1987)

    Google Scholar 

  10. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Mechanical Systems—The Real-Time Challenge. Springer, Berlin (1994)

    Google Scholar 

  11. Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dmitrochenko, O., Yoo, W.-S., Pogorelov, D.: Helicoseir as shape of a rotating string (I): 2D theory and simulation using ANCF. Multibody Syst. Dyn. 15(2), 135–158 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)

    Article  Google Scholar 

  14. Shabana, A.A., Wehage, R.A.: A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct. Mech. 11, 401–431 (1989)

    Google Scholar 

  15. Craig, R.R. Jr., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    MATH  Google Scholar 

  16. Nikravesh, P., Lin, Y.-S.: Use of principal axes as the floating reference frame for a moving deformable body. Multibody Syst. Dyn. 13(2), 211–231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pereira, M., Proença, P.: Dynamic analysis of spatial flexible multibody systems using joint coordinates. Int. J. Numer. Methods Eng. 32, 1799–1812 (1991)

    Article  MATH  Google Scholar 

  18. Yoo, W., Haug, E.: Dynamics of flexible mechanical systems using vibration and static correction modes. J. Mech. Transm. Autom. Des. 108, 315–322 (1986)

    Google Scholar 

  19. Liu, J.-F., Yang, J., Abdel-Malek, K.: Dynamics analysis of linear elastic planar mechanisms. Multibody Syst. Dyn. 17(1), 1–25 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ambrósio, J., Ravn, P.: Elastodynamics of multibody systems using generalized inertial coordinates and structural damping. Mech. Struct. Mach. 25, 201–219 (1997)

    Article  Google Scholar 

  21. Lehner, M., Eberhard, P.: On the use of moment-matching to build reduced order models in flexible multibody dynamics. Multibody Syst. Dyn. 16(2), 191–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles kinematics and dynamics. Multibody Syst. Dyn. 9(3), 237–264 (2003)

    Article  MATH  Google Scholar 

  23. Angeles, J., Lopez-Cajun, C.S.: Optimization of CAM Mechanisms. Springer, Dordrecht (1991)

    MATH  Google Scholar 

  24. Ambrósio, J.: Efficient kinematic joints descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003)

    Article  MATH  Google Scholar 

  25. Gonçalves, J., Ambrósio, J.: Advanced modeling of flexible multibody dynamics using virtual bodies. Comput. Assist. Mech. Eng. Sci. 9(3), 373–390 (2002)

    MATH  Google Scholar 

  26. Muñoz, J., Jelenic, G.: Sliding joints in 3D beams: conserving algorithms using the master–slave approach. Multibody Syst. Dyn. 16(3), 237–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cesnik, C., Hodges, D.: VABS: a new concept for composite rotor blade cross-sectional modeling. J. Am. Helicopter Soc. 42(1), 27–38 (1997)

    Google Scholar 

  28. Augusta Neto, M., Ambrósio, J., Leal, R.: Flexible multibody systems using composite materials components. Multibody Syst. Dyn. 12(4), 363–405 (2004)

    Article  Google Scholar 

  29. Bauchau, O., Hodges, D.: Analysis of nonlinear multibody systems with elastic couplings. Multibody Syst. Dyn. 3, 163–188 (1999)

    Article  MATH  Google Scholar 

  30. Augusta Neto, M., Ambrósio, J., Leal, R.: Composite materials in flexible computational multibody dynamics. Comput. Methods Appl. Mech. Eng. 195, 6860–6873 (2006)

    Article  MATH  Google Scholar 

  31. Venkataraman, S., Haftka, R.: Optimization of composite panels—a review. In: Proc. of the 14th Annual Technical Conference of the American Society of Composites, Dayton, OH, 27–29 September 1999

  32. Eberhard, P., Dignath, F., Kübler, L.: Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 9, 143–164 (2003)

    Article  MATH  Google Scholar 

  33. Eberhard, P., Schiehlen, W., Bestle, D.: Some advantages of Stochastic methods in multicriteria optimization of multibody systems. Arch. Appl. Mech. 69, 543–554 (1999)

    MATH  Google Scholar 

  34. Adelman, H.M., Haftka, R.T.: Sensitivity analysis of discrete structural systems. AIAA J. 24, 823–832 (1986)

    Article  Google Scholar 

  35. Greene, W., Haftka, R.: Computational aspects of sensitivity calculations in transient structural analysis. Comput. Struct. 32(2), 433–443 (1989)

    Article  Google Scholar 

  36. Haftka, R., Gürdal, Z.: Elements of Structural Optimization. Kluwer Academic, Dordrecht (1992)

    MATH  Google Scholar 

  37. Dias, J., Pereira, M.: Sensitivity analysis of rigid-flexible multibody systems. Multibody Syst. Dyn. 1, 303–322 (1997)

    Article  MATH  Google Scholar 

  38. Dias, J.: Análise de sensibilidades e optimização de sistemas mecânicos rígido-flexíveis (Sensitivity analysis and optimization of rigid-flexible mechanical systems). PhD thesis, Instituto Superior Técnico de Lisboa, Technical University of Lisbon, Lisbon, Portugal (1999)

  39. Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: ADIFOR: generating derivative codes from Fortran programs. Sci. Program. 1(1), 11–29 (1992)

    Google Scholar 

  40. Bischof, C., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: automatic differentiation of Fortran 77 programs. IEEE Comput. Sci. Eng. 3(3), 18–32 (1996)

    Article  Google Scholar 

  41. Venkataraman, S., Haftka, R.: Structural optimization: what has Moore’s law done for us? In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 22–25 April 2002

  42. Vanderplaats, G.: DOT-Design Optimization Tools, Version 3.0. VMA Engineering, Colorado Springs (1992)

    Google Scholar 

  43. Cook, R.: Concepts and Applications of Finite Element Analysis. 2nd edn. Wileyand, New York (1987)

    Google Scholar 

  44. Duff, A., Erisman, Reid, J.: Direct Methods for Sparse Matrices. Clarendon, Oxford (1986)

    MATH  Google Scholar 

  45. Cavin, R., Dusto, A.: Hamilton’s principle: finite element method and flexible body dynamics. AIAA J. 15(12), 1684–1690 (1977)

    MATH  Google Scholar 

  46. Augusta Neto, M.: Optimization of flexible multibody systems with composite materials. PhD thesis, Mech. Engng Dept., Univ. of Coimbra, Coimbra, Portugal (2005)

  47. Cesnik, C., Hodges, D.: VABS: a new concept for composite rotor blade cross-sectional modeling. J. Am. Helicopter Soc. 42(1), 27–38 (1997)

    Article  Google Scholar 

  48. Popescu, B., Hodges, D.: On asymptotically correct Timoshenko-like anisotropic beam theory. Int. J. Solids Struct. 37, 535–558 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Bauchau, O., Hodges, D.: Analysis of nonlinear multibody systems with elastic couplings. Multibody Syst. Dyn. 3, 163–188 (1999)

    Article  MATH  Google Scholar 

  50. Chang, C., Nikravesh, P.: Optimal design of mechanical systems with constraint violation stabilization method. J. Mech. Transm. Autom. Des. 107, 493–498 (1985)

    Article  Google Scholar 

  51. Kim, M., Choi, D.: A new approach to the min-max dynamic response optimization. In: Bestle, D., Schiehlen, W. (eds.) IUTAM-Symposium on Optimization of Mechanical Systems, pp. 65–72. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  52. Gonçalves, J., Ambrósio, J.: Road vehicle modeling requirements for optimization of ride and handling. Multibody Syst. Dyn. 13(1), 3–23 (2005)

    Article  MATH  Google Scholar 

  53. Haug, E., Arora, J.: Applied Optimal Design. Wiley, New York (1979)

    Google Scholar 

  54. Hsieh, C., Arora, J.: Design sensitivity analysis and optimization of dynamic response. Comput. Methods Appl. Mech. Eng. 43, 195–219 (1984)

    Article  MATH  Google Scholar 

  55. Grandhi, R., Haftka, R., Watson, L.: Design-oriented identification of critical times in transient response. AIAA J. 24, 649–656 (1986)

    Google Scholar 

  56. He, Y., McPhee, J.: Multidisciplinary optimization of multibody systems with application to the design of rail vehicles. Multibody Syst. Dyn. 14(2), 111–135 (2005)

    Article  MATH  Google Scholar 

  57. Eberhard, P., Bischof, C.: Automatic differentiation of numerical integration algorithms. Math. Comput. 68, 717–731 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Nelson, R.B.: Simplified calculation of eigenvector derivatives. AIAA J. 14(9), 1201–1205 (1976)

    MATH  MathSciNet  Google Scholar 

  59. Dailey, L.: Eigenvector derivatives with repeated eigenvalues. AIAA J. 27(4), 486–491 (1989)

    MathSciNet  Google Scholar 

  60. Duran, M.A., Grossmann, I.E.: An outer approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  61. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  62. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31, 1533–1546 (1985)

    MATH  MathSciNet  Google Scholar 

  63. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  64. Ng, K.-M.: A continuation approach for solving nonlinear optimization problems with discrete variables. PhD dissertation, Stanford University, Stanford, CA (2002)

  65. Anantharaman, M., Hiller, M.: Numerical simulation of mechanical systems using methods for differential-algebraic equations. Int. J. Numer. Methods Eng. 32, 1531–1542 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. C. Ambrósio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrósio, J.A.C., Neto, M.A. & Leal, R.P. Optimization of a complex flexible multibody systems with composite materials. Multibody Syst Dyn 18, 117–144 (2007). https://doi.org/10.1007/s11044-007-9086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9086-y

Keywords

Navigation