Skip to main content
Log in

Cluster computing of mechanisms dynamics using recursive formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the O(n) recursive algorithm for forward dynamics of closed loop kinematic chains adapted to parallel computations on a cluster of workstations. The Newton–Euler equations of motion are formulated in terms of relative coordinates. Closed loop kinematic chains are transformed into open loop chains by cut joint technique. Cut joint constraint and Lagrange multipliers are introduced to complete the equations of motion. Constraint stabilization is performed using the Baumgarte stabilization technique with application to multibody systems with large number of degrees of freedom. Numerical simulations are carried out to study the influence of the degrees of freedom of the multibody system on computational efficiency of the algorithm using the Message Passing Interface (MPI). We also consider the ways of minimization of communication overhead which has significant impact on efficiency in case of cluster computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ADAMS 2007 r1 MSC Software Online Help (ADAMS/View, ADAMS/Solver)

  2. Arczewski, K., Frączek, J.: Friction models and stress recovery methods in vehicle dynamics modelling. Multibody Syst. Dyn. 14, 205–224 (2005)

    Article  MATH  Google Scholar 

  3. Anderson, K.S., Duan, S.: Highly parallelizable low–order dynamics simulation algorithm for multi–rigid–body systems. J. Guid. Control. Dyn. 23(2), 355–364 (2000)

    Article  Google Scholar 

  4. Anderson, K.S., Critchley, J.H.: Improved ‘Order-N’ performance algorithm for the simulation of constrained multi–rigid–body dynamic systems. Multibody Syst. Dyn. 9, 185–225 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avello, A., Jimenez, J.M., Bayo, E., Jalon, J.G.: A simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations. Comput. Methods Appl. Mech. Eng. 107, 313–339 (1993)

    Article  MATH  Google Scholar 

  6. Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part I: Open loop systems. Mech. Struct. Mach. 15, 359–382 (1987)

    Article  Google Scholar 

  7. Bae, D.S., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part II: Closed loop systems. Mech. Struct. Mach. 15, 481–506 (1987)

    Article  Google Scholar 

  8. Bae, D.S., Kuhl, J.G., Haug, E.J.: A recursive formulation for constrained mechanical system dynamics. Part III: Parallel processor implementation. Mech. Struct. Mach. 16, 249–269 (1988)

    Article  Google Scholar 

  9. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bayo, E., de Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988)

    Article  MATH  Google Scholar 

  11. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial–Value Problems in DAE. SIAM, Philadelphia (1989)

    Google Scholar 

  12. Chung, S., Haug, E.J.: Real-time simulation of multibody dynamics on shared memory multiprocessors. J. Dyn. Syst. Meas. Control 115, 627–637 (1993)

    Article  MATH  Google Scholar 

  13. Critchley, J.H., Anderson, K.S.: A parallel logarithmic order algorithm for general multibody system dynamics. Multibody Syst. Dyn. 12, 75–93 (2004)

    Article  MATH  Google Scholar 

  14. Critchley, J.H., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1, 181–200 (2000)

    Article  Google Scholar 

  15. Critchley, J.H., Binani, A., Anderson, K.S.: Design and implementation of an efficient multibody divide and conquer algorithm. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences, Las Vegas, Nevada, USA (2007)

  16. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space–state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55–73 (2000)

    Article  MATH  Google Scholar 

  17. Duan, S., Anderson, K.S.: Parallel implementation of a low order algorithm for dynamics of multibody systems on a distributed memory computing system. Eng. Comput. 16, 96–108 (2000)

    Article  MATH  Google Scholar 

  18. Eichberger, A.: Transputer-based multibody system dynamic simulation. Part I: The residual algorithm—a modified inverse dynamic formulation. Mech. Struct. Mach. 22(2), 211–237 (1994)

    Article  MathSciNet  Google Scholar 

  19. Eichberger, A.: Transputer-based multibody system dynamic simulation. Part II: Parallel implementation—results. Mech. Struct. Mach. 22(2), 239–261 (1994)

    Article  MathSciNet  Google Scholar 

  20. Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Rob. Res. 2, 13–30 (1983)

    Article  Google Scholar 

  21. Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Dordrecht (1987)

    Google Scholar 

  22. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log (n)) calculation of rigid body dynamics. Part 1: Basic algorithm. Int. J. Rob. Res. 18, 867–875 (1999)

    Article  Google Scholar 

  23. Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel O(log (n)) calculation of rigid body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Rob. Res. 18, 876–892 (1999)

    Article  Google Scholar 

  24. Featherstone, R., Fijany, A.: A technique for analyzing constrained rigid–body systems, and its application to the constraint force algorithm. IEEE Trans. Rob. Autom. 15(6), 1140–1144 (1999)

    Article  Google Scholar 

  25. Fijany, A., Bejczy, A.K.: Techniques for parallel computation of mechanical manipulator dynamics. Part II: Forward dynamics. Control Dyn. Syst. 40, 357–410 (1991)

    Google Scholar 

  26. Fijany, A., Sharf, I., D’Eleuterio, G.M.T.: Parallel O(log N) algorithms for computation of manipulator forward dynamics. IEEE Trans. Rob. Autom. 11, 389–400 (1995)

    Article  Google Scholar 

  27. Fisette, P., Peterkenne, J.M.: Contribution to parallel and vector computation in multibody dynamics. Parallel Comput. 24, 717–728 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison Wesley, Reading (2003)

    Google Scholar 

  29. Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic, London (1986)

    Google Scholar 

  30. Guide to the SLATEC Common Mathematical Library, http://www.netlib.org/slatec

  31. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Needham Heights (1989)

    Google Scholar 

  32. Hwang, R.S., Bae, D.S., Kuhl, J.G., Haug, E.J.: Parallel processing for real-time dynamic system simulation. J. Mech. Des. 112, 520–528 (1990)

    Article  Google Scholar 

  33. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14, 531–542 (1991)

    Article  MATH  Google Scholar 

  34. Kasahara, H., Fujii, H., Iwata, M.: Parallel processing of robot motion simulation. In: Proceedings IFAC World Congress, Munich (1987)

  35. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw-Hill, New York (1985)

    Google Scholar 

  36. Lathrop, R.: Parallelism in manipulator dynamics. Technical Report 754, MIT Artificial Intelligence Laboratory (1984)

  37. Lee, C.S.G., Chang, P.R.: Efficient parallel algorithms for robot forward dynamics computation. IEEE Trans. Syst. Man Cybern. 18, 238–251 (1988)

    Article  MathSciNet  Google Scholar 

  38. Malczyk, P., Frączek, J.: Cluster computing of mechanisms dynamics using recursive formulation. In: Proceedings of the 12th World Congress in Mechanism and Machine Science, IFToMM 2007, Besancon, France (2007)

  39. Saha, K.S., Schiehlen, W.: Recursive kinematics and dynamics for parallel structured closed-loop multibody systems. Mech. Struct. Mach. 29(2), 143–175 (2001)

    Article  Google Scholar 

  40. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge (1986)

    Google Scholar 

  41. Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. Dekker, New York (1996)

    Google Scholar 

  42. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. ASME J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982)

    MATH  Google Scholar 

  43. Wojtyra, M., Frączek, J.: Redundant constraints reactions in rigid MBS with coulomb friction in joints. In: Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2007, Milano, Italy (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Malczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malczyk, P., Frączek, J. Cluster computing of mechanisms dynamics using recursive formulation. Multibody Syst Dyn 20, 177–196 (2008). https://doi.org/10.1007/s11044-008-9115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-008-9115-5

Keywords

Navigation