Skip to main content
Log in

Free vibration characteristics of stiffened sandwich plates with auxetic core and functionally graded piezoelectric face sheet

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the free vibration characteristics of stiffened sandwich plates with auxetic core and functionally graded piezoelectric face sheet are investigated. The sandwich plate configuration comprises three distinct layers: a top layer consisting of functionally graded piezoelectric material (FGPie), a core layer composed of auxetic material exhibiting a negative Poisson's ratio, and a bottom layer made of functionally graded material (FGM). The sandwich plate is reinforced by isotropic stiffeners along the x and y directions. A novel model is established based on the four-variable shear deformation refined plate theory and the pb2-Ritz method. This model offers the flexibility to analyze plates with diverse mechanical boundary conditions and supports two types of electrical boundary conditions: closed circuit and open circuit. The accuracy and convergence of the proposed model are validated through comparative analyses against published results, thereby confirming the reliability when analyzing the vibration characteristics of this complex sandwich structure. Furthermore, some new investigations are carried out to explore the influence of various parameters on the vibrational characteristics of the stiffened piezoelectric auxetic sandwich (SA-FGPie) plates. The results suggest that the properties of the reinforcing stiffeners, such as quantity or dimensions, alter the free vibration characteristics of the SA-FGPie plates significantly. In addition, parameters such as the volume fraction indexes of the FGPie and FGM layers, electrical boundary conditions or FGPie layer thickness, as well as geometric parameters of the auxetic unit cell also have a significant influence on the vibration response of SA-FGPie plates. However, the influence of these parameters depends on the specific boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z.: A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv. Mater. Technol. 5(6), 1900981 (2020)

    Article  Google Scholar 

  2. Mahesh, V.: Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading. Mech. Adv. Mater. Struct. 29(19), 2707–2725 (2022)

    Article  Google Scholar 

  3. Mahesh, V., Kattimani, S.: Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. J. Intell. Mater. Syst. Struct. 30(12), 1757–1771 (2019)

    Article  Google Scholar 

  4. Zhang, S.-Q., Zhao, G.-Z., Rao, M.N., Schmidt, R., Yu, Y.-J.: A review on modeling techniques of piezoelectric integrated plates and shells. J. Intell. Mater. Syst. Struct. 30(8), 1133–1147 (2019)

    Article  Google Scholar 

  5. Wu, X.-H., Chen, C., Shen, Y.-P., Tian, X.-G.: A high order theory for functionally graded piezoelectric shells. Int. J. Solids Struct. 39(20), 5325–5344 (2002)

    Article  Google Scholar 

  6. Sedighi, M., Shakeri, M.: A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels. Smart Mater. Struct. 18(5), 055015 (2009)

    Article  Google Scholar 

  7. Bodaghi, M., Shakeri, M.: An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Compos. Struct. 94(5), 1721–1735 (2012)

    Article  Google Scholar 

  8. Farsangi, M.A., Saidi, A.: Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers. Smart Mater. Struct. 21(9), 094017 (2012)

    Article  Google Scholar 

  9. Farsangi, M.A., Saidi, A., Batra, R.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332(22), 5981–5998 (2013)

    Article  Google Scholar 

  10. Zhong, Z., Yu, T.: Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Mater. Struct. 15(5), 1404 (2006)

    Article  Google Scholar 

  11. Barati, M.R., Zenkour, A.M.: Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J. Vib. Control 24(10), 1910–1926 (2018)

    Article  MathSciNet  Google Scholar 

  12. Behjat, B., Salehi, M., Sadighi, M., Armin, A., Abbasi, M.: Static, dynamic, and free vibration analysis of functionally graded piezoelectric panels using finite element method. J. Intell. Mater. Syst. Struct. 20(13), 1635–1646 (2009)

    Article  Google Scholar 

  13. Alderson, A., Evans, K.: Microstructural modelling of auxetic microporous polymers. J. Mater. Sci. 30, 3319–3332 (1995)

    Article  Google Scholar 

  14. Wan, H., Ohtaki, H., Kotosaka, S., Hu, G.: A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech. A/Solids. 23(1), 95–106 (2004)

    Article  Google Scholar 

  15. Zhang, G., Ghita, O.R., Evans, K.E.: Dynamic thermo-mechanical and impact properties of helical auxetic yarns. Compos. B Eng. 99, 494–505 (2016)

    Article  Google Scholar 

  16. Grujicic, M., Galgalikar, R., Snipes, J., Yavari, R., Ramaswami, S.: Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwich-structures. Mater. Des. 51, 113–130 (2013)

    Article  Google Scholar 

  17. Whitty, J., Alderson, A., Myler, P., Kandola, B.: Towards the design of sandwich panel composites with enhanced mechanical and thermal properties by variation of the in-plane Poisson’s ratios. Compos. A Appl. Sci. Manuf. 34(6), 525–534 (2003)

    Article  Google Scholar 

  18. Mahesh, V., Mahesh, V., Harursampath, D., Abouelregal, A.E.: Simulation-based assessment of coupled frequency response of magneto-electro-elastic auxetic multifunctional structures subjected to various electromagnetic circuits. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236(11), 2281–2296 (2022)

    Google Scholar 

  19. Wang, T., Qin, Q., Wang, M., Yu, W., Wang, J., Zhang, J., Wang, T.: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations. Int. J. Impact Eng 105, 24–38 (2017)

    Article  Google Scholar 

  20. Qi, C., Remennikov, A., Pei, L.-Z., Yang, S., Yu, Z.-H., Ngo, T.D.: Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos. Struct. 180, 161–178 (2017)

    Article  Google Scholar 

  21. Tran, T.T., Pham, Q.H., Nguyen-Thoi, T., Tran, T.-V.: Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation. Adv. Mater. Sci. Eng. 2020, 1–16 (2020)

    Article  Google Scholar 

  22. Nguyen, N.V., Nguyen-Xuan, H., Nguyen, T.N., Kang, J., Lee, J.: A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Compos. Struct. 259, 113213 (2021)

    Article  Google Scholar 

  23. Dat, N.D., Quan, T.Q., Duc, N.D.: Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Compos. Struct. 280, 114925 (2022)

    Article  Google Scholar 

  24. Quan, T.Q., Anh, V.M., Mahesh, V., Duc, N.D.: Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate. Mech. Adv. Mater. Struct. 29(1), 127–137 (2022)

    Article  Google Scholar 

  25. Mahesh, V.: Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Compos. Struct. 290, 115523 (2022)

    Article  Google Scholar 

  26. Mahesh, V.: Nonlinear free vibration of multifunctional sandwich plates with auxetic core and magneto-electro-elastic facesheets of different micro-topological textures: FE approach. Mech. Adv. Mater. Struct. 29(27), 6266–6287 (2022)

    Article  Google Scholar 

  27. Chadha, K., Mahesh, V., Mangalasseri, A.S., Mahesh, V.: On analysing vibration energy harvester with auxetic core and magneto-electro-elastic facings. Thin-Walled Struct. 184, 110533 (2023)

    Article  Google Scholar 

  28. Mahesh, V., Ponnusami, S.A.: Nonlinear damped transient response of sandwich auxetic plates with porous magneto-electro-elastic facesheets. Eur. Phys. J. Plus. 137(5), 1–21 (2022)

    Article  Google Scholar 

  29. Mahesh, V.: Integrated effects of auxeticity and pyro-coupling on the nonlinear static behaviour of magneto-electro-elastic sandwich plates subjected to multi-field interactive loads. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 09544062221149300 (2023)

  30. Goel, M.D., Matsagar, V.A., Gupta, A.K.: Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam. Int. J. Impact Eng 77, 134–146 (2015)

    Article  Google Scholar 

  31. Rajasekaran, S.: Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl. Math. Model. 37(6), 4440–4463 (2013)

    Article  MathSciNet  Google Scholar 

  32. Damnjanović, E., Marjanović, M., Nefovska-Danilović, M.: Free vibration analysis of stiffened and cracked laminated composite plate assemblies using shear-deformable dynamic stiffness elements. Compos. Struct. 180, 723–740 (2017)

    Article  Google Scholar 

  33. Qin, X., Dong, C., Wang, F., Qu, X.: Static and dynamic analyses of isogeometric curvilinearly stiffened plates. Appl. Math. Model. 45, 336–364 (2017)

    Article  MathSciNet  Google Scholar 

  34. Lee, D.-M., Lee, I.: Vibration analysis of anisotropic plates with eccentric stiffeners. Comput. Struct. 57(1), 99–105 (1995)

    Article  Google Scholar 

  35. Khayat, M., Rahnema, H., Baghlani, A., Dehghan, S.M.: A theoretical study of wave propagation of eccentrically stiffened FGM plate on Pasternak foundations based on higher-order shear deformation plate theory. Mater. Today Commun. 20, 100595 (2019)

    Article  Google Scholar 

  36. Harik, I., Guo, M.: Finite element analysis of eccentrically stiffened plates in free vibration. Comput. Struct. 49(6), 1007–1015 (1993)

    Article  Google Scholar 

  37. Van Dung, D., Nga, N.T.: Thermomechanical postbuckling analysis of eccentrically stiffened FGM sandwich plates with general Sigmoid and power laws based on TSDT. J. Sandwich Struct. Mater. 20(8), 907–945 (2018)

    Article  Google Scholar 

  38. Sinha, L., Mishra, S., Nayak, A., Sahu, S.: Free vibration characteristics of laminated composite stiffened plates: Experimental and numerical investigation. Compos. Struct. 233, 111557 (2020)

    Article  Google Scholar 

  39. Liu, Y., Wang, Q.: Computational study of strengthening effects of stiffeners on regular and arbitrarily stiffened plates. Thin-Walled Struct. 59, 78–86 (2012)

    Article  Google Scholar 

  40. Pham, H.-A., Tran, H.-Q., Tran, M.-T., Nguyen, V.-L., Huong, Q.-T.: Free vibration analysis and optimization of doubly-curved stiffened sandwich shells with functionally graded skins and auxetic honeycomb core layer. Thin-Walled Struct. 179, 109571 (2022)

    Article  Google Scholar 

  41. Brush, D. O.; Almroth, B. O.; Hutchinson, J.: Buckling of bars, plates, and shells. (1975)

  42. Najafizadeh, M., Hasani, A., Khazaeinejad, P.: Mechanical stability of functionally graded stiffened cylindrical shells. Appl. Math. Model. 33(2), 1151–1157 (2009)

    Article  MathSciNet  Google Scholar 

  43. Tran, H.-Q., Vu, V.-T., Tran, M.-T.: Free vibration analysis of piezoelectric functionally graded porous plates with graphene platelets reinforcement by pb-2 Ritz method. Compos. Struct. 305, 116535 (2023)

    Article  Google Scholar 

  44. Tham, V., Tran, H., Tu, T.: Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells. Appl. Math. Mech. 42(6), 819–840 (2021)

    MathSciNet  Google Scholar 

  45. Quoc, T.H., Van Tham, V., Tu, T.M.: Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech. 232, 1005–1023 (2021)

    Article  MathSciNet  Google Scholar 

  46. Huu Quoc, T., Minh, Tu., T., Van Tham, V.: Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refined plate theory. Materials. 12(22), 3675 (2019)

    Article  Google Scholar 

  47. Sayyaadi, H., Rahnama, F., Farsangi, M.A.A.: Energy harvesting via shallow cylindrical and spherical piezoelectric panels using higher order shear deformation theory. Compos. Struct. 147, 155–167 (2016)

    Article  Google Scholar 

  48. Shiyekar, S., Kant, T.: Higher order shear deformation effects on analysis of laminates with piezoelectric fibre reinforced composite actuators. Compos. Struct. 93(12), 3252–3261 (2011)

    Article  Google Scholar 

  49. Zenkour, A.M., Alghanmi, R.A.: Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations. Eur. J. Mech. A/Solids. 75, 461–471 (2019)

    Article  MathSciNet  Google Scholar 

  50. Tran, H.-Q., Vu, V.-T., Nguyen, V.-L., Tran, M.-T.: Free vibration and nonlinear dynamic response of sandwich plates with auxetic honeycomb core and piezoelectric face sheets. Thin-Walled Structures. 191, 111141 (2023)

    Article  Google Scholar 

  51. Zenkour, A.M., Alghanmi, R.A.: Static response of sandwich plates with FG core and piezoelectric faces under thermo-electro-mechanical loads and resting on elastic foundations. Thin-Walled Struct. 157, 107025 (2020)

    Article  Google Scholar 

  52. Chevallier, G., Ghorbel, S., Benjeddou, A.: A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 17(6), 065007 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Hanoi University of Civil Engineering (HUCE) under grant number 24-2022/KHXD-TĐ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu-Quoc Tran.

Ethics declarations

Conflicting interests

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\overline{k}^{{s_{1} s_{1} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{{a^{2} b^{2} }}\left( {b^{2} A_{11} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \varsigma }\frac{{\partial {\overline{\mathbf{U}}}^{T} }}{\partial \varsigma } + a^{2} A_{66} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \vartheta }\frac{{\partial {\overline{\mathbf{U}}}^{T} }}{\partial \vartheta }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{1} s_{2} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{ab}\left( {A_{12} \frac{{\partial {\overline{\mathbf{U}}}}}{\varsigma }\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\vartheta } + A_{66} \frac{{\partial {\overline{\mathbf{U}}}}}{\vartheta }\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\varsigma }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{1} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{ - 16}{{ab^{2} }}\left( {{\mkern 1mu} \frac{{b^{2} }}{{a^{2} }}B_{11} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \varsigma }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \varsigma^{2} }} + B_{12} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \varsigma }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \vartheta^{2} }} + 2B_{66} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial \vartheta }} \right)} d\varsigma d\vartheta } ;$$
$$\overline{k}^{{s_{1} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{ - 16}{{ab^{2} }}\left( {\frac{{b^{2} }}{{a^{2} }}\left( {B_{11}^{s} + \frac{{B_{12}^{s} }}{2}{\mkern 1mu} } \right)\frac{{\partial {\overline{\mathbf{U}}}}}{\partial \varsigma }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \varsigma^{2} }} + 2B_{66}^{s} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial \vartheta } + \frac{{B_{12}^{s} }}{2}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{{\partial \vartheta^{2} }}\frac{{\partial {\overline{\mathbf{U}}}^{T} }}{\partial \varsigma }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{1} s_{5} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{2}{a}\left( {\left( {P_{3} - A_{pie} } \right)\frac{{\partial {\overline{\mathbf{U}}}}}{\partial \varsigma }{\overline{{\Phi }}}^{T} } \right)d\varsigma d\vartheta } } ; \, \overline{k}^{{s_{2} s_{1} }} = \left( {\overline{k}^{{s_{1} s_{2} }} } \right)^{T} ;$$
$$\overline{k}^{{s_{2} s_{2} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{{a^{2} b^{2} }}\left( {a^{2} A_{22} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial \vartheta }\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\partial \vartheta } + b^{2} A_{66} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial \varsigma }\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\partial \varsigma }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{2} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{ - 16}{{a^{2} b}}\left( {{\mkern 1mu} B_{12} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }}\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\partial \vartheta } + \left( \frac{a}{b} \right)^{2} B_{22} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \vartheta^{2} }}\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\partial \vartheta } + 2B_{66} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial \varsigma }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial \vartheta }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{2} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{ - 16}{{a^{3} b^{3} }}\left( {ab^{2} B_{12}^{s} + a^{3} B_{22}^{s} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \vartheta^{2} }} + {\mkern 1mu} 2ab^{2} B_{66}^{s} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial \varsigma }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial \vartheta }} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{2} s_{5} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{2}{a}\left( {\left( {P_{3} - A_{pie} } \right)\frac{{\partial {\overline{\mathbf{V}}}}}{\partial \vartheta }{\overline{{\Phi }}}^{T} } \right)d\varsigma d\vartheta } } ; \, \overline{k}^{{s_{3} s_{1} }} = \left( {\overline{k}^{{s_{1} s_{3} }} } \right)^{T} ; \, \overline{k}^{{s_{3} s_{2} }} = \left( {\overline{k}^{{s_{2} s_{3} }} } \right)^{T} ;$$
$$\overline{k}^{{s_{3} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{32}{{a^{4} b^{4} }}\left( \begin{gathered} b^{4} D_{11} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \varsigma^{2} }} + 2a^{2} b^{2} D_{12} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \vartheta^{2} }} + \hfill \\ a^{4} D_{22} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \vartheta^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{{\partial \vartheta^{2} }} + 4a^{2} b^{2} D_{66} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \varsigma \partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial \vartheta } \hfill \\ \end{gathered} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{3} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{16}{{a^{2} b^{2} }}\left( \begin{gathered} \left( {{\mkern 1mu} \left( \frac{b}{a} \right)^{2} \left( {2D_{11}^{s} + {\mkern 1mu} D_{12}^{s} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \varsigma^{2} }}} \right) \hfill \\ + 2\left( {D_{12}^{s} + \frac{1}{2}D_{22}^{s} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \vartheta^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \varsigma^{2} }} \hfill \\ + D_{12}^{s} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \vartheta^{2} }} + 8D_{66} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \varsigma \partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial \vartheta } \hfill \\ + \left( \frac{a}{b} \right)^{2} D_{22}^{s} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \vartheta^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \vartheta^{2} }} \hfill \\ \end{gathered} \right)d\varsigma d\vartheta } } ;$$
$$\begin{gathered} \overline{k}^{{s_{3} s_{5} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{16}{{a^{2} b^{2} }}\left( {\left( {B_{bp}^{b} - P_{4} } \right)\left( {\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \varsigma^{2} }} + \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{{\partial \vartheta^{2} }}} \right){\overline{{\Phi }}}^{T} } \right)d\varsigma d\vartheta } } ; \, \overline{k}^{{s_{4} s_{1} }} = \left( {\overline{k}^{{s_{1} s_{4} }} } \right)^{T} ; \hfill \\ \overline{k}^{{s_{4} s_{2} }} = \left( {\overline{k}^{{s_{2} s_{4} }} } \right)^{T} ; \, \overline{k}^{{s_{4} s_{3} }} = \left( {\overline{k}^{{s_{3} s_{4} }} } \right)^{T} ; \hfill \\ \end{gathered}$$
$$\overline{k}^{{s_{4} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{{a^{2} b^{2} }}\left( \begin{gathered} {\mkern 1mu} \left( \frac{b}{a} \right)^{2} \left( {4\left( {H_{11}^{s} + {\mkern 1mu} H_{12}^{s} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{{\partial \vartheta^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \varsigma^{2} }}} \right) \hfill \\ + 4\left( {H_{12}^{s} + 2H_{22}^{s} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{{\partial \vartheta^{2} }}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{{\partial \varsigma^{2} }} \hfill \\ + b^{2} A_{55}^{s} \frac{{\partial {\overline{\mathbf{W}}}_{s} }}{\partial \varsigma }\frac{{\partial {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma } + a^{2} A_{44}^{s} \frac{{\partial {\overline{\mathbf{W}}}_{s} }}{\partial \vartheta }\frac{{\partial {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \vartheta } \hfill \\ + 16H_{66}^{s} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{\partial \varsigma \partial \vartheta }\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial \vartheta } \hfill \\ \end{gathered} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{4} s_{5} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{4}{{a^{2} b^{2} }}\left( \begin{gathered} b^{2} \left( {B_{pie}^{s} - P_{5} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{{\partial \varsigma^{2} }}{\overline{{\Phi }}}^{T} + a^{2} \left( {B_{pie}^{s} - P_{5} } \right)\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{{\partial \vartheta^{2} }}{\overline{{\Phi }}}^{T} \hfill \\ + \left( {P_{1} - A_{pie}^{s} } \right)\left( {a^{2} \frac{{\partial {\overline{\mathbf{W}}}_{s} }}{\partial \vartheta }\frac{{\partial {\overline{{\Phi }}}^{T} }}{\partial \vartheta } + b^{2} \frac{{\partial {\overline{\mathbf{W}}}_{s} }}{\partial \varsigma }\frac{{\partial {\overline{{\Phi }}}^{T} }}{\partial \varsigma }} \right) \hfill \\ \end{gathered} \right)d\varsigma d\vartheta } } ;$$
$$\overline{k}^{{s_{5} s_{5} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2\left( {\frac{{P_{2} }}{{a^{2} }}\frac{{\partial {\overline{{\Phi }}}}}{\partial \varsigma }\frac{{\partial {\overline{{\Phi }}}^{T} }}{\partial \varsigma } + \frac{{P_{2} }}{{b^{2} }}\frac{{\partial {\overline{{\Phi }}}}}{\partial \vartheta }\frac{{\partial {\overline{{\Phi }}}^{T} }}{\partial \vartheta } + P_{6} {\mathbf{\overline{\Phi }\overline{\Phi }}}^{T} } \right)d\varsigma d\vartheta } } ;$$
$$m^{{s_{1} s_{1} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2I_{0} \frac{{\partial {\overline{\mathbf{U}}}}}{\partial t}\frac{{\partial {\overline{\mathbf{U}}}^{T} }}{\partial t}d\varsigma d\vartheta } } ; \, m^{{s_{1} s_{2} }} = 0; \, m^{{s_{1} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{{ - 4I_{1} }}{a}\frac{{\partial {\overline{\mathbf{U}}}}}{\partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial t}d\varsigma d\vartheta } } ;$$
$$m^{{s_{1} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{{ - 4I_{2} }}{a}\frac{{\partial {\overline{\mathbf{U}}}}}{\partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial t}d\varsigma d\vartheta } } ;$$
$$m^{{s_{2} s_{1} }} = 0; \, m^{{s_{2} s_{2} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2I_{0} \frac{{\partial {\overline{\mathbf{V}}}}}{\partial t}\frac{{\partial {\overline{\mathbf{V}}}^{T} }}{\partial t}d\varsigma d\vartheta } } ; \, m^{{s_{2} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{{ - 4I_{1} }}{b}\frac{{\partial {\overline{\mathbf{V}}}}}{\partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \vartheta \partial t}d\varsigma d\vartheta } } ;$$
$$m^{{s_{2} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{{ - 4I_{2} }}{b}\frac{{\partial {\overline{\mathbf{V}}}}}{\partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \vartheta \partial t}d\varsigma d\vartheta } } ; \, m^{{s_{3} s_{1} }} = m^{{s_{1} s_{3} }} ; \, m^{{s_{3} s_{2} }} = m^{{s_{2} s_{3} }} ;$$
$$m^{{s_{3} s_{3} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2I_{0} \frac{{\partial {\overline{\mathbf{W}}}_{b} }}{\partial t}\frac{{\partial {\overline{\mathbf{W}}}_{b}^{T} }}{\partial t}d\varsigma d\vartheta } } + \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{{8I_{4} }}{{a^{2} b^{2} }}\left( {b^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \varsigma \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \varsigma \partial t} + a^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \vartheta \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{b}^{T} }}{\partial \vartheta \partial t}} \right)d\varsigma d\vartheta } } ;$$
$$m^{{s_{3} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2{\mkern 1mu} I_{0} \frac{{\partial {\overline{\mathbf{W}}}_{b} }}{\partial t}\frac{{\partial {\overline{\mathbf{W}}}_{s}^{T} }}{\partial t}d\varsigma d\vartheta } } + \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{{a^{2} b^{2} }}{\mkern 1mu} I_{3} \left( {b^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \varsigma \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial t} + a^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{b} }}{\partial \vartheta \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \vartheta \partial t}} \right)d\varsigma d\vartheta } } ;$$
$$m^{{s_{4} s_{1} }} = \left( {m^{{s_{1} s_{4} }} } \right)^{T} ; \, m^{{s_{4} s_{2} }} = \left( {m^{{s_{2} s_{4} }} } \right)^{T} ; \, m^{{s_{4} s_{3} }} = \left( {m^{{s_{3} s_{4} }} } \right)^{T} ;$$
$$m^{{s_{4} s_{4} }} = \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {2{\mkern 1mu} I_{0} \frac{{\partial {\overline{\mathbf{W}}}_{s} }}{\partial t}\frac{{\partial {\overline{\mathbf{W}}}_{s}^{T} }}{\partial t}d\varsigma d\vartheta } } + \frac{ab}{4}\int\limits_{0}^{1} {\int\limits_{0}^{1} {\frac{8}{{a^{2} b^{2} }}I_{5} \left( {b^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{\partial \varsigma \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \varsigma \partial t} + a^{2} \frac{{\partial^{2} {\overline{\mathbf{W}}}_{s} }}{\partial \vartheta \partial t}\frac{{\partial^{2} {\overline{\mathbf{W}}}_{s}^{T} }}{\partial \vartheta \partial t}} \right)d\varsigma d\vartheta } }$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, VT., Tran, HQ. Free vibration characteristics of stiffened sandwich plates with auxetic core and functionally graded piezoelectric face sheet. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03932-z

Navigation