Skip to main content
Log in

Twenty-five years of natural coordinates

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In the early eighties, the author and co-workers created and further developed the natural coordinates to describe the motion of 2-D and 3-D multibody systems. Natural coordinates do not need angles or angular parameters to define orientation, leading to constant inertia matrices and to the simplest form of the constraint equations. Natural coordinates are composed by the Cartesian coordinates of some points and the Cartesian components of some unit vectors distributed on the different bodies of the system. The points and vectors can be located in the joints, being shared by contiguous bodies, decreasing or even eliminating the need to set joint constraints and reducing the total number of variables. However, other authors prefer not to share variables in order to get even simpler equations and to keep a bigger decoupling of equations, which is preferable in some cases.

In this paper the history of natural coordinates is reviewed, as well as the main contributions coming from other research groups. In the second part of the paper some application areas in which natural coordinates can be particularly advantageous are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer, Berlin (1994). The full text of this book is available online in http://mat21.etsii.upm.es/mbs/

    Google Scholar 

  2. Géradin, M., Rixen, D.: Parametrization of finite rotations in computational dynamics: a review. Rev. Eur. Élém. Finis 4, 497–553 (1995)

    MATH  Google Scholar 

  3. Angeles, J.: Fundamentals of Robotic Mechanical Systems, 2nd edn. Springer, New York (2003)

    Google Scholar 

  4. García de Jalón, J., Serna, M.A., Avilés, R.: A computer method for kinematic analysis of lower-pair mechanisms. First part: velocities and accelerations. Mech. Mach. Theory 16, 543–556 (1981)

    Google Scholar 

  5. García de Jalón, J., Serna, M.A., Avilés, R.: A computer method for kinematic analysis of lower-pair mechanisms. Second part: position problems. Mech. Mach. Theory 16, 557–566 (1981)

    Google Scholar 

  6. Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17, 397–403 (1982)

    Article  Google Scholar 

  7. Wehage, R., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  8. García de Jalón, J., Serna, M.A., Viadero, F., Flaquer, J.: A simple numerical method for the kinematic analysis of spatial mechanisms. ASME J. Mech. Des. 104, 78–82 (1982)

    Google Scholar 

  9. Tárrago, J.A., Serna, M.A., Bastero, C., García de Jalón, J.: A computer method for the finite displacement problem in spatial mechanisms. ASME J. Mech. Des. 104, 869–874 (1982)

    Google Scholar 

  10. Vilallonga, G., Unda, J., García de Jalón, J.: Numerical kinematic analysis of three-dimensional mechanisms using a natural system of Lagrangian coordinates. In: 18th ASME Biennial Mechanisms Conference, Cambridge, USA (1984)

  11. García de Jalón, J., Unda, J., Avello, Al.: Natural coordinates for the computer analysis of three-dimensional multibody systems. Comput. Methods Appl. Mech. Eng. 56, 309–327 (1986)

    Article  MATH  Google Scholar 

  12. von Schwerin, R.: Multibody System Simulation. Numerical Methods, Algorithms and Software. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Kraus, Ch.: Efficient object-oriented modeling, simulation and parameter estimation for biomechanical problems. Inaugural-Dissertation, Interdisciplinary Center of Scientific Computing (IWR), University of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/7043/ (2006)

  14. Kraus, C., Wincker, M., Bock, H.-G.: Modeling mechanical dae using natural coordinates. Math. Comput. Model. Dyn. Sys. 7, 145–158 (2001)

    Article  MATH  Google Scholar 

  15. Kraus, C., Bock, H.-G., Mutschler, H.: Parameter estimation for biomechanical models based on a special form of natural coordinates. Multibody Sys. Dyn. 13, 101–111 (2005)

    Article  MATH  Google Scholar 

  16. Rodríguez, J.I., Jiménez, J.M., Funes, F.J., García de Jalón, J.: Recursive and residual algorithms for the efficient numerical integration of multi-body systems. Multibody Syst. Dyn. 11, 295–320 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cardenal, J., Cuadrado, J., Morer, P., Bayo, E.: A multi-index variable time step method for the dynamic simulation of multibody systems. Int. J. Numer. Methods Eng. 44, 1579–1598 (1999)

    Article  MATH  Google Scholar 

  18. Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4, 55–73 (2000)

    Article  MATH  Google Scholar 

  19. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection method for constrained multibody dynamics. J. Nonlinear Dyn. 9, 113–130 (1996)

    Article  MathSciNet  Google Scholar 

  20. Arponen, T.: Regularization of constraint singularities in multibody systems. Multibody Syst. Dyn. 6, 355–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cossalter, V., Lot, R.: A motorcycle multi-body model for real time simulations based on the natural coordinates approach. Veh. Syst. Dyn. 37, 423–447 (2002)

    Article  Google Scholar 

  22. Stejskal, V., Valasek, M.: Kinematics and Dynamics of Machinery. Dekker, New York (1996)

    Google Scholar 

  23. García de Jalón, J., Shimizu, N., Gómez, D.: Natural coordinates for teaching multibody systems with Matlab. Paper DETC2007-35358, ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, USA, 4–7 September 2007

  24. Pennestrì, E., Vita, L.: Multibody dynamics in advanced education. In: Ambrósio, J.A.C. (ed.) Advances in Computational Multibody Systems, pp. 345–370. Kluwer, Dordrecht (2006)

    Google Scholar 

  25. Álvarez, G., Gutiérrez, A., Serrano, N., Urban, P., García de Jalón, J.: Computer data acquisition, analysis and visualization of elite athletes motion. In: VIth International Symposium on Computer Simulation in Biomechanics, Paris (1993)

  26. Celigüeta, J.T.: Multibody simulation of human body motion in sports. In: Proceedings of the XIV International Symposium on Biomechanics in Sports FMH, Technical University of Lisbon, pp. 81–94 (1996)

  27. Silva, M.P.T., Ambrosio, J.A.C.: Pedestrian impact and run over using a multibody simulation tool. Int. J. Crashworthiness 4, 261–271 (1999)

    Article  Google Scholar 

  28. Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8, 219–239 (2002)

    Article  MATH  Google Scholar 

  29. Czaplicki, A., Silva, M.P.T., Ambrosio, J.C.: Biomechanical modeling for the whole body motion using natural coordinates. J. Theor. Appl. Mech. 42, 927–944 (2004)

    Google Scholar 

  30. Silva, M.P.T., Ambrosio, J.A.C.: Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait Posture 19, 35–49 (2004)

    Article  Google Scholar 

  31. Czaplicki, A., Silva, M.P.T., Ambrosio, J.A.C., Jesus, O., Abrantes, J.: Estimation of the muscle force distribution in ballistic motion based on a multibody methodology. Comput. Methods Biomech. Biomed. Eng. 9, 45–54 (2006)

    Article  Google Scholar 

  32. Seemann, W., Stelzner, G., Simonidis, C.: Correction of motion capture data with respect to kinematic data consistency for inverse dynamic analysis. Paper DETC2005-84964, ASME International Design Engineering Tecnical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005

  33. Boulic, R., Varona, J., Unzueta, L., Peinado, M., Suescun, A., Perales, F.: Evaluation of on-line and numeric inverse kinematics approaches driven by partial video input. Virtual Real. 10, 48–61 (2006)

    Article  Google Scholar 

  34. STT Systems Engineering: http://www.simtechniques.com/02_index.asp

  35. Avilés, R., Ajuria, M.B., García de Jalón, J.: A fairly general method for the optimum synthesis of planar mechanisms. Mech. Mach. Theory 20, 321–328 (1985)

    Article  Google Scholar 

  36. Vallejo, J., Avilés, R., Hernández, A., Amezua, E.: Nonlinear optimization of planar linkages for kinematics syntheses. Mech. Mach. Theory 30, 501–518 (1995)

    Article  Google Scholar 

  37. Sancibrian, R., Viadero, F., García, P., Fernández, A.: Gradient-based optimization of path synthesis problems in planar mechanisms. Mech. Mach. Theory 39, 839–856 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Alba, J.A., Doblaré, M., Gracia, L.: A simple method for the synthesis of 2D and 3D mechanisms with kinematic constraints. Mech. Mach. Theory 35, 645–674 (2000)

    Article  MATH  Google Scholar 

  39. Jiménez, J.M., Álvarez, G., Cardenal, J., Cuadrado, J.: A simple and general method for kinematic synthesis of spatial mechanisms. Mech. Mach. Theory 32, 323–341 (1997)

    Article  Google Scholar 

  40. Collard, J.-F., Fisette, P., Duysinx, P.: Optimal synthesis of mechanisms using time-varying dimensions and natural coordinates. In: 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May–3 June 2005

  41. Da Lio, M., Cossalter, V., Lot, R.: On the use of natural coordinates in optimal synthesis of mechanisms. Mech. Mach. Theory 35, 1367–1389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Cuadrado, J., Cardenal, J., García de Jalón, J.: Flexible mechanisms through natural coordinates and component synthesis: an approach fully compatible with the rigid case. Int. J. Numer. Methods Eng. 39, 3535–3551 (1996)

    Article  MATH  Google Scholar 

  43. Avello, Al., García de Jalón, J., Bayo, E.: Dynamics of flexible multibody systems with Cartesian coordinates and large displacements theory. Int. J. Numer. Methods Eng. 32, 1543–1563 (1991)

    Article  MATH  Google Scholar 

  44. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1998)

    MATH  Google Scholar 

  45. García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier García de Jalón.

Additional information

Commemorative Contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jalón, J.G. Twenty-five years of natural coordinates. Multibody Syst Dyn 18, 15–33 (2007). https://doi.org/10.1007/s11044-007-9068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-007-9068-0

Keywords

Navigation