Skip to main content
Log in

A nonlinear composite shell element with continuous interlaminar shear stresses

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A numerical model for layered composite structures based on a geometrical nonlinear shell theory is presented. The kinematic is based on a multi-director theory, thus the in-plane displacements of each layer are described by independent director vectors. Using the isoparametric apporach a finite element formulation for quadrilaterals is developed. Continuity of the interlaminar shear stresses is obtained within the nonlinear solution process. Several examples are presented to illustrate the performance of the developed numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ω:

reference surface

ξα :

convected coordinates of the shell middle surface

iζ:

coordinate in thickness direction

i h :

thickness of layer i

Xo :

position vector of the reference surface

iXo :

position vector of midsurface of layer i

t k :

orthonormal basis system in the reference configuration

ia k :

orthonormal basis system of layer i

δiW:

axial vector

Ro :

orthonormal tensor in the reference configuration

iR:

orthonormal tensor of layer i

iσ:

Cauchy stress tensor

iP:

First Piola-Kirchhoff stress tensor

iq:

vector of interlaminar stresses

inα,imα :

vector of stress resultants and stress couple resultants

v x :

components of the normal vector of boundary Ωα

iNαβ, iQα, iMαβ :

stress resultants and stress couple resultants of First Piola-Kirchhoff tensor

\({}^i\tilde N^{\alpha \beta } ,{}^i\tilde Q^\alpha ,{}^i\tilde M^{\alpha \beta } \) :

stress resultants and stress couple resultants of Second Piola-Kirchhoff tensor

iεαβ, iκαβ, iγαβ :

strains of layer i

ΛK :

transformation matrix

uo :

displacement vector of layer 1

iβα :

local rotational degrees of freedom of layer i

References

  • Babuška, I.; Szabó, B. A.; Actis, R. L. (1992): Hierarchi models for laminated composites. Int. J. Num. Meth. Engng. 33, 503–535

    Google Scholar 

  • Dorninger, K.; Rammerstorfer, F. (1990): A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations. Int. J. Num. Meth. Engng. 30, 833–858

    Google Scholar 

  • Epstein, M.; Glockner, P. G. (1977): Nonlinear analysis of Multilayered shells. Int. J. Solids Struct. 13, 1081–1089

    Google Scholar 

  • Epstein, M.; Huttelmaier, H. P. (1983): A finite element formulation for multilayered and thick plates. Comp. and Struct. 5, 645–650

    Google Scholar 

  • Gruttmann, F.; Stein, E.; Wriggers, P. (1989): Theory and numerics of thin elastic shells with finite roations. Ingenieur Archiv. 59, 54–67

    Google Scholar 

  • Huttelmaier, H. P.; Epstein, M. (1990): A large displacement finite element for multilayered plates. Finite Elements in Analysis and Design 6, 189–196

    Google Scholar 

  • Jing, H. S.; Liao, M. L. (1989): Partial hybrid stress element for the analysis of thick laminated composite plates. Int. J. Num. Meth. Engng. 28, 2813–2827

    Google Scholar 

  • Kapania, R. K.; Raciti, S. (1989): Recent advances in analysis of laminated beams and plates, part I: Shear effects and buckling. AIAAJ. 27, 923–934

    Google Scholar 

  • Ladeur, P. (1992): Presentation of a linear or nonlinear analysis method for multilayered composite plats and shells with edge effects influence. In: Hirsch, C. H.; Zienkiewicz, O. C.; Onate, E. (eds.): Numerical methods in engineering '92, 637–644. London: Elsevier

    Google Scholar 

  • Ladeur, P.; Batoz, J. L. (1989): Composite plate analysis using a new discrete shear triangular finite element. Int. J. Num. Meth. Engng. 27, 343–359

    Google Scholar 

  • Lee, C.; Liu, D. (1992): An interlaminar stress continuity theory for laminated composite analysis. Comp. and Struct. 42, 69–78

    Google Scholar 

  • Levinson, M. (1980): An accurate, simple theory of the statics and dynamics of elastic plates. Mechanics research Communications 7, 343–350.

    Google Scholar 

  • Li, Z. H.; Owen, D. R. J. (1989): Elastic-plastic analysis of laminated anisotropic shells by a refined finite element laminated model. Comp. and Struct. 32, No. 5, 361–382

    Google Scholar 

  • Niederstedt, G. (1985): Leichtbau mit kohlefaserversträkten Kunststoffen. Kontakt und Studium Band 167. Sindelfingen: Expert

    Google Scholar 

  • Noor, A. K.; Burton, W. S.; Peters, J. M. (1989): Assessment of computational models for multilayered composite cylinders. In: Noor, A. K. et al. (eds.): Analytical and Computational models of shells. Vol. 3, ASME 3, 419–441. New York

  • Pagano, N. J. (1970): Exact solutions for rectangular bidirectional composites and sandwich plates. J. Comp. Mat. 4, 20–34

    Google Scholar 

  • Peseux, B.; Dubigeon, S. (1991): Equivalent homogeneous finite element for composite materials via Reissner principle. Part II: Finite element for shells. Int. J. Num. Meth. 31, 1497–1509

    Google Scholar 

  • Pinsky, P.; Jasti, R. V. (1989): A mixed finite etement for laminated composite plates based on the use of bubble functions. Eng. Comp. 6, 316–330

    Google Scholar 

  • Puchta, N. S.; Reddy, J. N. (1984): A mixed shear flexible element for the analysis of laminated plates. Comp. Meth. Appl. Mech. Engng. 44, 213–227

    Google Scholar 

  • Rammerstorfer, F. G. (1992): Lectures on composite and sandwich shells. In: Rammerstorfer, F. G. (ed.): Nonlinear analysis of shells by finite elements. CISM courses and lectures. No. 328, pp. 131–194. Wien, New York: Springer

    Google Scholar 

  • Reddy, J. N. (1984): A simple higher theory for laminated composite plates. J. Appl. Mech. ASME 51, 745–752

    Google Scholar 

  • Reddy, J. N.; Chandrashekhara, K. (1985): Nonlinear analysis of laminated shells including transverse shear strains. AIAA Journal 23, 440–441

    Google Scholar 

  • Reddy, J. N.; Barbero, E. J.; Teply, J. L. (1989): A plate bending element based on a generalized laminate plate theory. Int. J. Num. Meth. Engng. 28, 2275–2292

    Google Scholar 

  • Simo, J. C.; Fox, D. D.; Rifai, M. S. (1989): On a stress resultant geometrically exact shell model, part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Engng. 72, 267–304

    Google Scholar 

  • Tessler, A.; Saether, E. (1991): A computationally viable higher-order theory for laminated composite plates. Int. J. Num. Meth. Engng. 31, 1069–1086

    Google Scholar 

  • Toledano, A.; Murakami, H. (1987): A high-order laminated plate theory with improved in-plane responses. Int. J. Solids Struct. 23, 111–131

    Google Scholar 

  • Tsai, S. W.; Hahn, H. T. (1980): Introduction to composite materials. Technomic Publishing, Library of Congress, Westport Lancaster, USA

    Google Scholar 

  • Wagner, W.; Gruttmann, F. (1991): On the stability behaviour of composite shells. In: Ladevèze, P.; Zienkiewicz O. C. (eds.): Proceeding of the European Conference on New Advances in Computational Structural Mechanics, Giens (France) 2–5.4.1991, pp. 539–546

  • Wagner, W.; Stein, E. (1992): A new finite element formulation for colindrical shells of composite material. Comp. Eng. (in publication)

  • Wagner, W.; Gruttmann, F. (1992): A simple finite rotation formulation for composite shell elements. Eng. Comput. (in publication)

  • Whitney, J. M.; Pagano, N. J. (1970): Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech. ASME, 37, 1031–1036

    Google Scholar 

  • Wriggers, P.; Gruttmann, F. (1990): Large deformations of thin shells: Theory and finite-element-diskretization. In: Noor, A.; Belytschko, T.; Simo, J. C. (eds.): Analytical and computational models of shells. Vol. 3, ASME CED, 135–159

  • Yoda, T.; Atluri, S. N. (1992): Postbuckling analysis of stiffened laminated composite panels using a higher-order shear defor-mation theory. Comput. Mech. 9, 390–404

    Google Scholar 

  • Zienkiewicz, O. C.; Taylor, R. L. (1988): The finite element method. 4th edition, Vol. 1. London: McGraw Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, May 19, 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruttmann, F., Wagner, W., Meyer, L. et al. A nonlinear composite shell element with continuous interlaminar shear stresses. Computational Mechanics 13, 175–188 (1993). https://doi.org/10.1007/BF00370134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00370134

Keywords

Navigation