Skip to main content
Log in

A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new approach to model and analyze flexible spatial multibody systems with clearance of cylindrical joints is presented in this work. The flexible parts are modeled by using absolute nodal coordinate formulation (ANCF)-based elements, while the rigid parts are described by employing the natural coordinate formulation (NCF), which can lead to a constant system mass matrix for the derived system equations of motion. In a simple way, a cylindrical joint with clearance is composed of two main elements, that is, a journal inside a bearing. Additionally, a lubricant fluid can exist between these two mechanical elements to reduce the friction and wear and increase the system’s life. For the case in which the joint is modeled as a dry contact pair, a technique using a continuous approach for the evaluation of the contact force is applied, where the energy dissipation in the form of hysteresis damping is considered. Furthermore, the frictional forces developed in those contacts are evaluated by using a modified Coulomb’s friction law. For the lubricated case, the hydrodynamic theory for dynamically loaded journal bearings is used to compute the forces generated by lubrication actions. The lubricated model is based on the Reynolds equation developed for the case of journal bearings with length-to-diameter ratios up to 1. Using this approach, the misalignment of the journal inside the bearing can be studied. Finally, two demonstrative examples of application are used to provide results that support the discussion and show the validity of the proposed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, New York (1988)

    Google Scholar 

  2. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems, Basic Methods, vol. I. Allyn & Bacon, Needham Heights (1989)

    Google Scholar 

  3. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  4. Flores, P., Claro, J.C.P.: A systematic and general approach to kinematic position errors due to manufacturing and assemble tolerances. In: Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, 4–7 September (2007). 7 pp.

  5. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010)

    Article  Google Scholar 

  6. Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory. 43(12), 1625–1638 (2008)

    Article  MATH  Google Scholar 

  7. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Kinematics and dynamics of multibody systems with imperfect joints: models and case studies. In: Lecture Notes in Applied and Computational Mechanics, vol. 34. Springer, Berlin (2008)

  8. Bu, W., Liu, Z., Tan, J., Gao, S.: Detachment avoidance of joint elements of a robotic manipulator with clearances based on trajectory planning. Mech. Mach. Theory 45, 925–940 (2010)

    Article  MATH  Google Scholar 

  9. Ambrósio, J., Veríssimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009)

    Article  MATH  Google Scholar 

  10. Machado, M., Flores, P., Claro, J.C.P., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multi-body model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)

    Article  MATH  Google Scholar 

  11. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances, part 1: formulation of dynamic model. J. Eng. Ind. 93(1), 305–309 (1971)

    Article  Google Scholar 

  12. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances, part 2: dynamics response. J. Eng. Ind. 93(1), 310–316 (1971)

    Article  Google Scholar 

  13. Miedema, B., Mansour, W.M.: Mechanical joints with clearance: a three-mode model. J. Eng. Ind. 98(4), 1319–1323 (1976)

    Article  Google Scholar 

  14. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  15. Erkaya, S., Uzmay, İ.: A neural-genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20, 69–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 0110071 (2008)

    Article  Google Scholar 

  17. Erkaya, S., Uzmay, İ.: Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mech. Mach. Theory 44, 222–234 (2009)

    Article  MATH  Google Scholar 

  18. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44, 1211–1222 (2009)

    Article  MATH  Google Scholar 

  19. Erkaya, S., Uzmay, I.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58(1–2), 179–198 (2009)

    Article  MATH  Google Scholar 

  20. Duarte, F.B., Tenreiro, J.: Describing function of two masses with backlash. Nonlinear Dyn. 56(4), 409–413 (2009)

    Article  MATH  Google Scholar 

  21. Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  22. Flores, P., Lankarani, H.M.: Spatial rigid-multi-body systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1–2), 99–114 (2010)

    Article  MATH  Google Scholar 

  23. Roger, R.J., Andrews, G.C.: Dynamic simulation of planar mechanical systems with lubricated bearing clearances using vector-network methods. J. Eng. Ind. 99(1), 131–137 (1977)

    Article  Google Scholar 

  24. Liu, T.S., Lin, Y.S.: Dynamic analysis of flexible linkages with lubricated joints. J. Sound Vib. 141(2), 193–205 (1990)

    Article  Google Scholar 

  25. Ravn, P., Shivaswamy, S., Alshaer, B.J., Lankarani, H.M.: Joint clearances with lubricated long bearings in multibody mechanical systems. J. Mech. Des. 122, 484–488 (2000)

    Article  Google Scholar 

  26. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance model in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory. 37(9), 895–913 (2002)

    Article  MATH  Google Scholar 

  27. Moes, H., Sikkes, E.G., Bosma, R.: Mobility and impedance tensor methods for full and partial-arc journal bearings. J. Tribol. 108, 612–620 (1986)

    Article  Google Scholar 

  28. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56, 277–295 (2009)

    Article  MATH  Google Scholar 

  29. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  30. Stefanelli, R., Valentini, P.P., Vita, L.: Modeling of hydrodynamic journal bearing in spatial multibody systems. In: ASME International Design Engineering Technical Conference, DETC2005-84858, CA (2005)

    Google Scholar 

  31. García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Google Scholar 

  32. Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Google Scholar 

  33. Yakoub, R.Y., Shabana, A.A.: Three-dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Article  Google Scholar 

  34. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  35. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5, 0110101 (2010)

    Google Scholar 

  36. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearances for dynamic analysis of multibody systems. Proc. Inst. Mech. Eng. Part K, J. Multi-body Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  38. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  40. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact–impact force model on the dynamic response of multibody systems. Proc. Inst. Mech. Eng, Part K, J. Multi-body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  41. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  42. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 440–445 (1975)

    Article  Google Scholar 

  43. Dietl, P., Wensing, J., van Nijen, G.C.: Rolling bearing damping for dynamic analysis of multi-body systems-experimental and theoretical results. Proc. Inst. Mech. Eng. Part K, J. Multi-body Dyn. 214(1), 33–43 (2000)

    Google Scholar 

  44. Goldsmith, W.: Impact, the Theory and Physical Behaviour of Colliding Solids. Edward Arnold Ltd, London (1960)

    MATH  Google Scholar 

  45. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1944)

    MATH  Google Scholar 

  46. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  47. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  48. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004)

    Article  MATH  Google Scholar 

  50. Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26, 777–789 (2004)

    Article  Google Scholar 

  51. Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. In: Arczewski, K., Frączek, J., Wojtyra, M. (eds.) Proceedings of Multibody Dynamics 2009, ECCOMAS Thematic Conference Warsaw, Poland, June 29–July 2 (2009), 17 pp.

    Google Scholar 

  52. Pereira, C.M., Ambrósio, J.A., Ramalho, A.L.: A methodology for the generation of planar models for multibody chain drives. Multibody Syst. Dyn. 23, 303–324 (2010)

    Article  Google Scholar 

  53. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  54. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open loop multibody mechanical system. J. Mech. Des. 121, 119–127 (1999)

    Article  Google Scholar 

  55. Greenwood, D.T.: Principles of Dynamics. Prentice-Hall, New York (1965)

    Google Scholar 

  56. Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: Deformation description and contact models. In: Schiehlen, W., Valásek, M. (eds.) Proceedings of the NATO-ASI on Virtual Non-linear Multibody Systems, vol. II, pp. 15–33 (2002)

    Google Scholar 

  57. Karnopp, D.: Computer simulation of stick-slid friction in mechanical dynamic systems. J. Dyn. Syst., Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  58. Centea, D., Rahnejat, H., Menday, M.T.: Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Appl. Math. Model. 25, 177–192 (2001)

    Article  MATH  Google Scholar 

  59. Haessig, D.A., Friedland, B.: On the modelling and simulation of friction. J. Dyn. Syst., Meas. Control 113, 354–362 (1991)

    Article  Google Scholar 

  60. García De Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. Springer, New York (1994)

    Google Scholar 

  61. Hori, Y.: Hydrodynamic Lubrication. Springer, Berlin (2006)

    MATH  Google Scholar 

  62. Goenka, P.K.: Effect of surface ellipticity on dynamically loaded spherical and cylindrical joints and bearings. Ph.D. Dissertation, Cornell University, Ithaca, New York (1980)

  63. Pinkus, O., Sternlicht, S.A.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  64. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)

    Book  MATH  Google Scholar 

  65. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tian, Q., Zhang, Y., Chen, L., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)

    Article  Google Scholar 

  67. Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)

    Article  Google Scholar 

  68. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gerstmayr, J., Shabana, A.A.: Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation. In: ECCOMAS Thematic Conference, Madrid, Spain, 21–24 June (2005)

  70. Gerstmayr, J.: A solution strategy for elasto-plastic multibody systems and related problems. Ph.D. Dissertation, University of Linz, Austria (2001)

  71. Flores, P., Ambrósio, P.: On the contact detection for contact–impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Meijaard, J.P.: Efficient numerical integration of the equations of motion of non-smooth mechanical systems. Z. Angew. Math. Mech. 77, 419–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  74. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61, 633–653 (2010)

    Article  MATH  Google Scholar 

  75. Kakizaki, T., Deck, J.F., Dubowsky, S.: Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances. J. Mech. Des. 115, 839–847 (1993)

    Article  Google Scholar 

  76. Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Bauchau, O.A., Rodriguez, J.: Modelling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39, 41–63 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Q., Liu, C., Machado, M. et al. A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn 64, 25–47 (2011). https://doi.org/10.1007/s11071-010-9843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9843-y

Keywords

Navigation