Skip to main content
Log in

Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO3, and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annum) genes under cold stress conditions. J Biosci 30:657–667

    Article  PubMed  CAS  Google Scholar 

  2. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant-heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  3. Jiao W, Hong W, Li P, Sun S, Ma J, Qian M, Hu M, Chang Z (2008) The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed. Biochem J 410:63–70

    Article  PubMed  CAS  Google Scholar 

  4. Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  PubMed  CAS  Google Scholar 

  5. Borges JC, Ramos CHI (2005) Protein folding in the cell. Protein Pept Lett 12:256–261

    Article  Google Scholar 

  6. DeRocher AD, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96:1038–1047

    Article  PubMed  CAS  Google Scholar 

  7. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  PubMed  CAS  Google Scholar 

  8. Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  PubMed  CAS  Google Scholar 

  9. Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylidès C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527

    Article  PubMed  CAS  Google Scholar 

  10. Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z (2008) Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 67:363–373

    Article  PubMed  CAS  Google Scholar 

  11. Cao Z, Jia Z, Liu Y, Wang M, Zhao J, Zheng J, Wang G (2010) Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep 37:1089–1097

    Article  PubMed  CAS  Google Scholar 

  12. Hamilton EW, Coleman JS (2001) Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuate (Solanaceae) when distant leaves are stressed. Am J Bot 88:950–955

    Article  CAS  Google Scholar 

  13. Malik MK, Slovin JP, Hwang CH, zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, HSP17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  PubMed  CAS  Google Scholar 

  14. Tiroli AO, Ramos CHI (2007) Chemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity. Int J Biochem Cell Biol 39:818–831

    Article  PubMed  CAS  Google Scholar 

  15. Luján R, Lledías F, Martínez LM, Barreto R, Cassab GI, Nieto-Sotelo J (2009) Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. Plant Cell Environ 32:1791–1803

    Article  PubMed  Google Scholar 

  16. Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26:21–25

    PubMed  CAS  Google Scholar 

  17. Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  PubMed  CAS  Google Scholar 

  18. Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  PubMed  CAS  Google Scholar 

  19. Gao C, Wang Y, Jiang B, Liu G, Yu L, Wei Z, Yang C (2011) A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Mol Biol Rep 38:957–963

    Article  PubMed  CAS  Google Scholar 

  20. Gao CQ, Wang YC, Liu GF, Yang CP, Jiang J, Li HY (2008) Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispida. Plant Mol Biol 66:245–258

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  22. Kang GY, Park EH, Lim CJ (2008) Molecular cloning, characterization and regulation of a peroxiredoxin gene from Schizosaccharomyces pombe. Mol Biol Rep 35:387–395

    Article  PubMed  CAS  Google Scholar 

  23. Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  PubMed  CAS  Google Scholar 

  24. Stupnikova I, Benamar A, Tolleter D, Grelet J, Borovskii G, Dorne AJ, Macherel D (2006) Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol 140:326–335

    Article  PubMed  CAS  Google Scholar 

  25. Maqbool A, Zahur M, Irfan M, Qaiser U, Rashid B, Husnain T, Riazuddin S (2007) Identification characterization and expression of drought related α-crystalline heat shock protein gene (GHSP) from Desi Cotton (Gossypium arboreum L.). Crop Sci 47:2437–2444

    Article  CAS  Google Scholar 

  26. Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857

    Article  PubMed  Google Scholar 

  27. Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 10:519–524

    Article  PubMed  CAS  Google Scholar 

  28. Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol 128:661–668

    Article  PubMed  CAS  Google Scholar 

  29. Sun W, Bernard C, van de Cotte B, Van MM, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  30. Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerant and UV-B resistant to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  31. Löw D, Brändle K, Nover L, Forreiter C (2000) Cytosolic heatstress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    Article  PubMed  Google Scholar 

  32. Andersen KM, Semple CA, Hartmann-Petersen R (2007) Characterisation of the nascent polypeptide-associated complex in fission yeast. Mol Biol Rep 34:275–281

    Article  PubMed  CAS  Google Scholar 

  33. Jeong M, Park S, Kwon H, Byun M (2000) Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 278:192–196

    Article  PubMed  CAS  Google Scholar 

  34. Lee EH, Hyun DH, Park EH, Lim CJ (2010) A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe. Mol Biol Rep 37:3663–3671

    Article  PubMed  CAS  Google Scholar 

  35. Liu ZH, Wang YC, Qi XT, Yang CP (2010) Cloning and characterization of a chitinase gene Lbchi31 from Limonium bicolor and identification of its biological activity. Mol Biol Rep 37:2447–2453

    Article  PubMed  CAS  Google Scholar 

  36. Mahalakshmi S, Christopher G, Reddy T, Rao K, Reddy V (2006) Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta 224:347–359

    Article  PubMed  CAS  Google Scholar 

  37. Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R (2003) The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J 34:257–267

    Article  PubMed  CAS  Google Scholar 

  38. Shen X, Martens S, Chen M, Li D, Dong J, Wang T (2010) Cloning and characterization of a functional flavanone-3β-hydroxylase gene from Medicago truncatula. Mol Biol Rep 37:3283–3289

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Wang Y, Liu G, Yang c, Li c (2011) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast. Mol Biol Rep 38:1567–1574

    Article  PubMed  CAS  Google Scholar 

  40. Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Genetically modified organisms breeding major projects (no. 2009ZX08009-098B), the Fundamental Research Funds for the Central Universities (no. DL12CA03) and the National Natural Science Foundation of China (no. 31000312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanping Yang.

Additional information

Caiqiu Gao and Bo Jiang have the same contribution to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, C., Jiang, B., Wang, Y. et al. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast. Mol Biol Rep 39, 4889–4897 (2012). https://doi.org/10.1007/s11033-011-1284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1284-2

Keywords

Navigation