Skip to main content
Log in

Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Heat-shock proteins (HSPs) are a group of evolutionarily conserved polypeptides whose expression is induced in all organisms in response to environmental stresses and during various developmental processes. In this work, we show that the rose (Rosa hybrida) cytoplasmic 17.5-kDa Class I small HSP (sHSP17.5-CI, accession number: BQ103946) increases dramatically during flower development, and accumulates in closed bud petals and leaves only in response to heat stress. mRNA for a putative ortholog of this protein is also found in petals, but not leaves, of Arabidopsis (Arabidopsis thaliana) plants grown under optimal conditions, and it accumulates in leaves in response to heat stress. Analysis of Arabidopsis T-DNA insertion lines affected at three homologous genes revealed that their acquired thermotolerance, as measured by hypocotyl-elongation assay, is impaired. The correlation between sHSP-CI accumulation and expansion of rose petal cells, impairment of acquired thermotolerance, and defects in early embryogenesis of the double mutants (hsp17.4/hsp17.6A), all suggest that sHSP-CI proteins play a role in protecting cell proteins at various developmental stages, whereas in hypocotyl elongation they have a non-redundant function in acquired thermotolerance but have a redundant function in early embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

sHSP:

Small heat-shock protein

WT:

Wild type

Rh:

Rosa hybrida

FC:

Fragrant cloud

At:

Arabidopsis thaliana

References

  • Ahrman E, Lambert W, Aquilina JA, Robinson CV, Emanuelsson CS (2007) Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci 16:1464–1478

    Article  PubMed  Google Scholar 

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792

    Article  PubMed  CAS  Google Scholar 

  • Almoguera C, Coca MA, Jordano J (1993) Tissue-specific expression of sunflower heat-shock proteins in response to water-stress. Plant J 4:947–958

    Article  CAS  Google Scholar 

  • Almoguera C, Prieto-Dapena P, Jordano J (1998) Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. Plant J 13:437–446

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Friedrich KL, Vierling E (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem 281:39943–39952

    Article  PubMed  CAS  Google Scholar 

  • Ben-Meir H, Zuker A, Weiss D, Vainstein A (2002) Molecular control of floral pigmentation: anthocyanins. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer, Dordrecht

    Google Scholar 

  • Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229–238

    PubMed  CAS  Google Scholar 

  • Channeliere S, Riviere S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT, Verna JW, Bennett AB (1995) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulation gene (sucr) controlling fruit sugar composition. Theor Appl Genet 91:327–333

    CAS  Google Scholar 

  • Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 25:479–492

    Article  PubMed  CAS  Google Scholar 

  • Collada C, Gomez L, Casado R, Aragoncillo C (1997) Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115:71–77

    Article  PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Guterman I, Menda N, Ovadis M, Shalit M, Pichersky E, Zamir D, Lewinsohn E, Adam Z, Weiss D, Vainstein A (2005) Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222:37–46

    Article  PubMed  CAS  Google Scholar 

  • Derocher AE, Vierling E (1994) Developmental control of small heat-shock protein expression during pea seed maturation. Plant J 5:93–102

    Article  CAS  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  PubMed  CAS  Google Scholar 

  • Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E (1993) Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol 13:238–247

    PubMed  CAS  Google Scholar 

  • Hernandez LD, Vierling E (1993) Expression of low molecular weight heat-shock proteins under field conditions. Plant Physiol 101:1209–1216

    PubMed  CAS  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA 97:4392–4397

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132:757–767

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sorensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Hong CB, Lee I (2001) Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J Plant Res 114:301–307

    Article  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Lenne C, Douce R (1994) A low molecular mass heat-shock protein is localized to higher plant mitochondria. Plant Physiol 105:1255–1261

    PubMed  CAS  Google Scholar 

  • Low D, Brandle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    Article  PubMed  CAS  Google Scholar 

  • Lubaretz O, zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsh EF, Sambork J (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor, NY

    Google Scholar 

  • Manning K (1991) Isolation of nucleic acids from plants by differential solvent precipitation. Anal Biochem 195:45–50

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Gerats T (1993) Control of pigment biosynthesis genes during petal development. Plant Cell 5:1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Medina-Escobar N, Cardenas J, Munoz-Blanco J, Caballero JL (1998) Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding to a mRNA for a low-molecular-weight heat-shock protein. Plant Mol Biol 36:33–42

    Article  PubMed  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Vierling E (1994) Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem 269:28676–28682

    PubMed  CAS  Google Scholar 

  • Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:633–643

    Article  PubMed  CAS  Google Scholar 

  • Rolland-Lagan AG, Bangham JA, Coen E (2003) Growth dynamics underlying petal shape and asymmetry. Nature 422:161–163

    Article  PubMed  CAS  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  PubMed  CAS  Google Scholar 

  • Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V (2000) Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J 23:703–713

    Article  PubMed  CAS  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    PubMed  CAS  Google Scholar 

  • van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JN (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7:1257–1263

    PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    Article  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Schoffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  PubMed  CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    PubMed  CAS  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  PubMed  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827–7832

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Israel Science Foundation (grant no. 466/01). We wish to thank Ifaat Laskar for technical assistance, Prof. David Weiss and Dr. Adi Zaltsman for helpful advice in the course of this study, and Ronit Rimon and Noa Wigoda for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mery Dafny-Yelin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PPT 2917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafny-Yelin, M., Tzfira, T., Vainstein, A. et al. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol Biol 67, 363–373 (2008). https://doi.org/10.1007/s11103-008-9326-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9326-4

Keywords

Navigation