Skip to main content
Log in

Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A small HSP gene, ZmsHSP, was isolated from Zea mays. Sequence analysis revealed that the open reading frame of ZmsHSP was 477 bp and that it encodes a protein composed of 159 amino acid residues with a calculated molecular mass of 18.17 kD and a predicated isoelectric point (pI) of 5.63. ZmsHSP contains a CS domain (p23-like domain) and shares similarity with the HSP90 co-chaperone p23. The expression level of ZmsHSP was different among various tissues with the highest expression in leaves and the lowest in silks. Results also showed that the expression of ZmsHSP in maize was significantly up-regulated by dehydration. Transgenic Arabidopsis plants overexpressing ZmsHSP under the control of the CaMV 35S promoter had lower endogenous cytokinin content and showed more sensitivity to cytokinin during the germination and early seedling stage than wild-type plants, suggesting that ZmsHSP might has a function in cytokinin response in Zea mays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Johnson JL, Toft DO (1994) A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem 269:24989–24993

    CAS  PubMed  Google Scholar 

  2. Harst A, Lin H, Obermann WM (2005) Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem J 387:789–796

    Article  CAS  PubMed  Google Scholar 

  3. Freire MA, Gomes-Leal W, Carvalho WA, Guimaraes JS, Franca JG, Picanco-Diniz CW, Pereira A Jr (2004) A morphometric study of the progressive changes on NADPH diaphorase activity in the developing rat’s barrel field. Neurosci Res 50:55–66

    Article  CAS  PubMed  Google Scholar 

  4. Toogun OA, Zeiger W, Freeman BC (2007) The p23 molecular chaperone promotes functional telomerase complexes through DNA disso0063iation. Proc Natl Acad Sci USA 104:5765–5770

    Article  CAS  PubMed  Google Scholar 

  5. Bose S, Weikl T, Bugl H, Buchner J (1996) Chaperone function of Hsp90-associated proteins. Science 274:1715–1717

    Article  CAS  PubMed  Google Scholar 

  6. Freeman BC, Yamamoto KR (2002) Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296:2232–2235

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100:11777–11782

    Article  CAS  PubMed  Google Scholar 

  9. Pidoux AL, Allshire RC (2000) Centromeres: getting a grip of chromosomes. Curr Opin Cell Biol 12:308–319

    Article  CAS  PubMed  Google Scholar 

  10. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073–2076

    Article  CAS  PubMed  Google Scholar 

  11. Helmstaedt K, Laubinger K, Vosskuhl K, Bayram O, Busch S, Hoppert M, Valerius O, Seiler S, Braus GH (2008) The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies. Eukaryot Cell 7:1041–1052

    Article  CAS  PubMed  Google Scholar 

  12. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. Embo J 22:5679–5689

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  14. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  Google Scholar 

  15. Muller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 2007:cm5

    Article  PubMed  Google Scholar 

  16. Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J 48:710–727

    Article  CAS  PubMed  Google Scholar 

  17. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Li G, Yi GX, Wang BM, Deng AX, Nan TG, Li ZH, Li QX (2006) Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta 571:79–85

    Article  CAS  PubMed  Google Scholar 

  20. Weiler EW, Jordan PS, Conrad W (1981) Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 153:561–571

    Google Scholar 

  21. Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. Embo J 19:5930–5940

    Article  CAS  PubMed  Google Scholar 

  22. Freeman BC, Toft DO, Morimoto RI, Bose S, Weikl T, Bugl H, Buchner J (1996) Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein p23 Chaperone function of Hsp90-associated proteins. Science 274:1718–1720

    Article  CAS  PubMed  Google Scholar 

  23. Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  Google Scholar 

  24. To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  CAS  PubMed  Google Scholar 

  25. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  PubMed  Google Scholar 

  26. Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-tech Program of China (2006AA10A106) and the Natural Science Foundation of China (30730063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Jia, Z., Liu, Y. et al. Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep 37, 1089–1097 (2010). https://doi.org/10.1007/s11033-009-9848-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9848-0

Keywords

Navigation