Skip to main content
Log in

The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792

    Article  PubMed  CAS  Google Scholar 

  • Atkinson BG, Raizada M, Bouchard RA, Frappier RH, Walden DB (1993) The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev Genet 14:15–26

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    Article  PubMed  CAS  Google Scholar 

  • Basha E, Friedrich KL, Vierling E (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem 281:39943–39952

    Article  PubMed  CAS  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BK (1997) Subunit exchange of alphaA-crystallin. J Biol Chem 272:29511–29517

    Article  PubMed  CAS  Google Scholar 

  • Bova MP, Huang Q, Ding L, Horwitz J (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem 277:38468–38475

    Google Scholar 

  • Carranco R, Almoguera C, Jordano J (1997) A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem 272:27470–27475

    Article  PubMed  CAS  Google Scholar 

  • Chou M, Chen YM, Lin CY (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol 98:617–621

    Google Scholar 

  • Clos J, Brandau S (1994) pJC20 and pJC40-two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr Purif 5:133–137

    Article  PubMed  CAS  Google Scholar 

  • Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol 31:863–876

    Article  PubMed  CAS  Google Scholar 

  • Craig WS (1988) Determination of quaternary structure of an active enzyme using chemical cross-linking with glutaraldehyde. Methods Enzymol 156:333–345

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the α-crystallin–small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed  CAS  Google Scholar 

  • Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62–69

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C, Kirschner M, Nover L (1997) Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 9:2171–2181

    Article  PubMed  CAS  Google Scholar 

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein–substrate complexes. J Biol Chem 279:1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    Article  PubMed  CAS  Google Scholar 

  • Giese KC, Vierling E (2004) Mutants in a small heat shock protein that affect the oligomeric state. J Biol Chem 279:32674–32683

    Article  PubMed  CAS  Google Scholar 

  • Giese KC, Basha E, Catague BY, Vierling E (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci USA 102:18896–18901

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Abulimiti A, Li W, Chang Z (2002) Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. J Mol Biol 319:517–526

    Article  PubMed  CAS  Google Scholar 

  • Guo SJ, Zhou HY, Zhang XS, Li XG, Meng QW (2007) Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI during chilling stress under low irradiance. J Plant Physiol 164:126–136

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005) Disassembling protein aggregates in the yeast cytosol. J Biol Chem 280:23861–23868

    Article  PubMed  CAS  Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJ, Konings AW, Landry J (1994) Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 204:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJ, Burgman PW, Konings AW (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp Cell Res 219:536–546

    Article  PubMed  CAS  Google Scholar 

  • Kappè G, Franck E, Verschuure P, Boelens WC, Leunissen JA, deJong WW (2003) The human genome encodes 10 α-crystallin-related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53–61

    Article  PubMed  Google Scholar 

  • Kim R, Kim KK, Yokota H, Kim SH (1998a) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95:9129–9133

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998b) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  PubMed  CAS  Google Scholar 

  • Kirschner M, Winkelhaus S, Thierfelder JM, Nover L (2000) Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J 24:397–411

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A, Tabata S (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19:182–195

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (1998) Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins. Methods Enzymol 290:350–365

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Lentze N, Studer S, Narberhaus F (2003) Structural and functional defects caused by point mutations in the alpha-crystallin domain of a bacterial alpha-heat shock protein. J Mol Biol 328:927–937

    Article  PubMed  CAS  Google Scholar 

  • Lin KH, Cheng SY (1991) An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli. Biotechniques 11:748–752

    PubMed  CAS  Google Scholar 

  • Liu J, Shono M (1999) Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant Cell Physiol 40:1297–1304

    PubMed  CAS  Google Scholar 

  • Löw D, Brandle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    Article  PubMed  Google Scholar 

  • Lubaretz O, zur Nieden U (2002) Accumulation of plant small heat-stress proteins in storage organs. Planta 215:220–228

    Article  PubMed  CAS  Google Scholar 

  • Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf KD, Nover L (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta 202:117–125

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    Article  PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  PubMed  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, Scharf KD, Nover L (1984) Heat shock induced changes of plant cell ultrastructure and autoradiographic localization of heat shock proteins. Eur J Cell Biol 34:254–264

    PubMed  CAS  Google Scholar 

  • Nover L (ed) (1991) Heat shock response. CRC, Boca Raton, FL

    Google Scholar 

  • Nover L, Scharf KD, Neumann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655

    PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9:1298–1308

    PubMed  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    PubMed  CAS  Google Scholar 

  • Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, Bublak D, Scharf KD (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135:1457–1470

    Article  PubMed  CAS  Google Scholar 

  • Prändl R, Kloske E, Schöffl F (1995) Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco and Arabidopsis plants. Plant Mol Biol 28:73–82

    Article  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  PubMed  CAS  Google Scholar 

  • Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251

    PubMed  CAS  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  PubMed  CAS  Google Scholar 

  • Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of as subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60:759–772

    Article  PubMed  CAS  Google Scholar 

  • Siddique M, Port M, Tripp J, Weber C, Zielinski D, Calligaris R, Winkelhaus S, Scharf KD (2003) Tomato heat stress protein Hsp16.1-CIII represents a member of a new class of nucleocytoplasmic small heat stress proteins in plants. Cell Stress Chaperones 8:381–394

    Article  PubMed  CAS  Google Scholar 

  • Smýkal P, Hrdy I, Pechan PM (2000) High-molecular-mass complexes formed in vivo contain smHSPs and HSP70 and display chaperone-like activity. Eur J Biochem 267:2195–2207

    Article  PubMed  Google Scholar 

  • Sobott F, Benesch JL, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. J Biol Chem 277:38921–38929

    Article  PubMed  CAS  Google Scholar 

  • Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the [alpha]-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    Article  PubMed  CAS  Google Scholar 

  • Stege GJ, Brunsting JF, Kampinga HH, Konings AW (1995) Thermotolerance and nuclear protein aggregation: protection against initial damage or better recovery? J Cell Physiol 164:579–586

    Article  PubMed  CAS  Google Scholar 

  • Studer S, Obrist M, Lentze N, Narberhaus F (2002) A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins. Eur J Biochem 269:3578–3586

    Article  PubMed  CAS  Google Scholar 

  • Töpfer R, Schell J, Steinbiss HH (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16:8725

    Article  PubMed  Google Scholar 

  • van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001a) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RLM, Slingsby C, Vierling E (2001b) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  • Vierling E (1991) The role of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 44:385–410

    Google Scholar 

  • Waters ER, Vierling E (1999) The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    PubMed  CAS  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 296:325–338

    Article  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones DOI 10.1007/s12192-008-0023-7

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  PubMed  CAS  Google Scholar 

  • Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    Article  PubMed  CAS  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vincente O, Schöffl F, Herberle-Bors E (1995) The expression of a small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zur Nieden U, Neumann D, Bucka A, Nover L (1995) Tissue-specific localization of heat-stress proteins during embryo development. Planta 196:530–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Eman Basha (Tucson) for gifts of purified recombinant Hsp17.6C-CI and Lutz Nover (Frankfurt) for many helpful discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft to K.D.S. (Scha577/6) and P.v.K.D. (AFGN grant KO2888/1-2), from the US National Institute of Health (GM42762), US Department of Agriculture (NRICGP 3510014857), and US National Science Foundation (IBN-0213128) to E.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Scharf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A Cytoplasmic/nuclear subfamily CIV. B Cytoplasmic/nuclear subfamily CV. C Cytoplasmic/nuclear subfamily CVI. D Mitochondrial subfamily MII. E Peroxisomal subfamily (Po) (PDF 237 KB)

Fig. S2

A Hsp17.6C-CI. B Hsp18.5-CIV. C Hsp21.7-CVI. D Hsp26.5-MIIΔTP. E Hsp15.7-Po (PDF 476 KB)

Fig. S3

A Nucleo-cytoplasmic sHsps. B Organellar sHsps (PDF 508 KB)

Table S1

Overview of sHsp expression constructs and used primers (DOC 49 KB)

Table S2

Overview of microarray elements for expression analysis of sHsps (DOC 42 KB)

Table S3

sHsps homologous to the newly identified A.thaliana members (DOC 147 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddique, M., Gernhard, S., von Koskull-Döring, P. et al. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress and Chaperones 13, 183–197 (2008). https://doi.org/10.1007/s12192-008-0032-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0032-6

Keywords

Navigation