Skip to main content
Log in

Cloning and characterization of a functional flavanone-3ß-hydroxylase gene from Medicago truncatula

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As a key enzyme in the biosynthesis of flavonols, anthocyanidins and proanthocyanidins, flavanone-3ß-hydroxylase (F3H) plays very important roles in plant stress response. A putative flavanone-3ß-hydroxylase gene from Medicago truncatula (MtF3H), a model legume species, was identified from a bio-data analysis platform. It was speculated to be induced by salt stress based on the outcomes of the analysis platform. The complementary DNA (cDNA) consists of 1499 bp with an open reading frame (ORF) of 1098 bp, which encodes a putative protein of 365 amino acids with a molecular weight of about 41.36 kDa and an isoelectric point of 5.60. To measure the catalytic activity of the protein, the MtF3H gene was ligated to pYES2 vector and heterologously expressed in yeast. The recombinant protein converted naringen into dihydrokaempferol and displayed different enzymatic efficiencies with other flavanones, confirming that MtF3H coding a functional flavanone-3ß-hydroxylase. The expression pattern of the MtF3H gene was analyzed by comparative quantitative RT-PCR and a higher level of expression was observed in the roots than was observed in stems and leaves. Furthermore, the expression was induced by salt stress in the roots, and to a greater extent in the stems, but the response of the gene activity to salt stress in the stems was slower in the first 12 h following treatment when compared to the roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotech Bioch 71:1387–1404. doi:10.1271/bbb.70028

    Article  CAS  Google Scholar 

  2. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400. doi:10.1016/S1360-1385(99)01471-5

    Article  PubMed  Google Scholar 

  3. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. doi:10.1016/S0031-9422(00)00235-1

    Article  CAS  PubMed  Google Scholar 

  4. Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407. doi:10.1016/j.phytochem.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  5. Prescott AG, John P (1996) Di-oxygenases: molecular structure and role in plant metabolism. Annu Rev Plant Physiol Plant Mol Biol 47:245–271. doi:10.1146/annurev.arplant.47.1.245

    Article  CAS  PubMed  Google Scholar 

  6. Wellmann F, Matern U, Lukačin R (2004) Significance of C-terminal sequence elements for Petunia flavanone-3ß-hydroxylase activity. FEBS Lett 561:149–154. doi:10.1016/S0014-5793(04)00159-0

    Article  CAS  PubMed  Google Scholar 

  7. Britsch L, Ruhnau-Brich B, Forkmann G (1992) Molecular cloning, sequence analysis, and in vitro expression of flavanone-3ß-hydroxylase from Petunia hybrida. J Biol Chem 267:5380–5387

    CAS  PubMed  Google Scholar 

  8. Davies KM (1993) A cDNA clone for flavanone 3-hydroxylase from Malus. Plant Physiol 103:291

    Article  CAS  PubMed  Google Scholar 

  9. Kim JH, Lee YJ, Kim BG, Lim Y, Ahn JH (2008) Flavanone-3ß-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis. Mol cells 25:312–316

    CAS  PubMed  Google Scholar 

  10. Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis thaliana seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase). Plant Physiol 111:339–345

    Article  CAS  PubMed  Google Scholar 

  11. Jin Z, Grotewold E, Qu W, Fu G, Zhao D (2005) Cloning and characterization of a flavanone 3-hydroxylase gene from Saussurea medusa. DNA Seq 16:121–129

    CAS  PubMed  Google Scholar 

  12. Shen G, Pang Y, Wu W, Deng Z, Zhao L, Cao Y, Sun X, Tang K (2006) Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba. Biosci Rep 26:19–29. doi:10.1007/s10540-006-9007-y

    Article  CAS  PubMed  Google Scholar 

  13. Charrier B, Coronado C, Kondorosi A, Ratet P (1995) Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol Biol 29:773–786

    Article  CAS  PubMed  Google Scholar 

  14. Baek MH, Chung BY, Kim JH, Wi SG, An BC, Kim JS, Lee SS, Lee IJ (2008) Molecular cloning and characterisation of the flavanone-3-hydroxylase gene from Korean black raspberry. J Hort Sci Biotech 83:595–602

    CAS  Google Scholar 

  15. Martens S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukacin R (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 544:93–98. doi:10.1016/S0014-5793(03)00479-4

    Article  CAS  PubMed  Google Scholar 

  16. Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ (2008) Biochemical and genetic characterization of Arabidopsis thaliana flavanone-3ß-hydroxylase. Plant Physiol Biochem 46:833–843. doi:10.1016/j.plaphy.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  17. Britsch L, Grisebach H (1986) Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur J Biochem/FEBS 156:569–577. doi:10.1111/j.1432-1033.1986.tb09616.x

    Article  CAS  Google Scholar 

  18. Britsch L, Dedio J, Saedler H, Forkmann G (1993) Molecular characterization of flavanone-3ß-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem/FEBS 217:745–754. doi:10.1111/j.1432-1033.1993.tb18301.x

    Article  CAS  Google Scholar 

  19. Lukacin R, Groning I, Pieper U, Matern U (2000) Site-directed mutagenesis of the active site serine290 in flavanone-3ß-hydroxylase from Petunia hybrida. Euro J Biochem/FEBS 267:853–860. doi:10.1016/S0014-5793(00)01116-9

    Article  CAS  Google Scholar 

  20. Lukacin R, Urbanke C, Groning I, Matern U (2000) The monomeric polypeptide comprises the functional flavanone-3ß-hydroxylase from Petunia hybrida. FEBS Lett 467:353–358. doi:10.1006/abbi.1999.1676

    Article  CAS  PubMed  Google Scholar 

  21. Lukacin R, Groning I, Schiltz E, Britsch L, Matern U (2000) Purification of recombinant flavanone-3ß-hydroxylase from Petunia Hybrida and assignment of the primary site of proteolytic degradation. Arch Biochem Biophys 375:364–370. doi:10.1046/j.1432-1327.2000.01064.x

    Article  CAS  PubMed  Google Scholar 

  22. Cook DR (1999) Medicago truncatula- a model in the making!. Curr Opin Plant Biol 2:301–304. doi:10.1016/S1369-5266(99)80053-3

    Article  CAS  PubMed  Google Scholar 

  23. Oldroyd GE, Geurts R (2001) Medicago truncatula, going where no plant has gone before. Trends Plant Sci 6:552–554. doi:10.1016/S1360-1385(01)02153-7

    Article  CAS  PubMed  Google Scholar 

  24. Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181. doi:10.1104/pp.104.057034

    Article  CAS  PubMed  Google Scholar 

  25. Town CD (2006) Annotating the genome of Medicago truncatula. Curr Opin Plant Biol 9:122–127. doi:10.1016/j.pbi.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  26. Sato S, Nakamura Y, Asamizu E, Isobe S, Tabata S (2007) Genome sequencing and genome resources in model legumes. Plant Physiol 144:588–593. doi:10.1104/pp.107.097493

    Article  CAS  PubMed  Google Scholar 

  27. Ane JM, Zhu H, Frugoli J (2008) Recent advances in Medicago truncatula genomics. Int J Plant Genomics 2008:256597 (Article ID). doi:10.1155/2008/256597

  28. Mathesius U, Keijzer G, Natera SHA, Weinman JJ, Djordjevic MA, Rolfe BG (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440. doi:10.1002/1615-9861(200111)1:11<1424:AID-PROT1424>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  29. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  30. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    Article  CAS  PubMed  Google Scholar 

  31. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  32. Eryilmaz F (2006) The relationships between salt stress and anthocyanin content in higher plants. Biotechnol Biotechnol Equip 20:47–52

    CAS  Google Scholar 

  33. Oosten MV, Bressan R (2005) (abstract no. 518). The anthocyanin-impaired-response-1 (air-1) mutant in the sos3-1 background of Arabidopsis thaliana is deficient in the accumulation of anthocyanins in response to salt stress. 16th International Conference on Arabidopsis Research, www.arabidopsis.org/news/PosterAbstracts.pdf, pp 229

  34. Barker DG, Pfaff T, Moreau D, Groves E, Ruffel S, Lepetit M, Whitehand S, Maillet F, Nair RM, Journet E-P (2006) Medicago truncatula handbook: Growing M. truncatula: choice of substrates and growth conditions, Available via DIALOG. http://www.noble.org/MedicagoHandbook/

  35. Liu Y, Su Z, Dong J, Shen X, Li D, Wang T (2006) Construction and application of Medicago truncatula bio-data analysis platform. Acta Agrestia Sinica 14:231–235

    Google Scholar 

  36. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17. doi:10.1111/j.1365-313X.2007.03117.x

    Article  CAS  PubMed  Google Scholar 

  37. de Lorenzo L, Merchan F, Blanchet S, Megías M, Frugier F, Crespi M, Sousa C (2007) Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol 145:1521–1532. doi:10.1104/pp.107.106146

    Article  PubMed  Google Scholar 

  38. de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680. doi:10.1105/tpc.108.059576

    Article  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  40. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:327–331. doi:10.1093/nar/gkh454

    Article  Google Scholar 

  41. Gebhardt YH, Witte S, Steuber H, Matern U, Martens S (2007) Evolution of flavone synthase I from parsley flavanone-3ß-hydroxylase by site-directed mutagenesis. Plant Physiol 144:1442–1454. doi:10.1104/pp.107.098392

    Article  CAS  PubMed  Google Scholar 

  42. Kim BG, Kim JH, Kim J, Lee C, Ahn JH (2008) Accumulation of flavonols in response to ultraviolet-B irradiation in soybean is related to induction of flavanone-3ß-hydroxylase and flavonol synthase. Mol cells 25:247–252

    CAS  PubMed  Google Scholar 

  43. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223. doi:10.1016/S1369-5266(02)00256-X

    Article  CAS  PubMed  Google Scholar 

  44. Ithal N, Reddy AR (2004) Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci 166:1505–1513. doi:10.1016/j.plantsci.2004.02.002

    Article  CAS  Google Scholar 

  45. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835. doi:10.1104/pp.105.065961

    Article  CAS  PubMed  Google Scholar 

  46. Waller GR, Nowacki EK (1978) Alkaloid biology and metabolismin in plants. Plenum Press, New York, pp 121–141

    Google Scholar 

  47. Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis thaliana. Plant Physiol 145:478–490. doi:10.1104/pp.107.101824

    Article  CAS  PubMed  Google Scholar 

  48. Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763. doi:10.1093/jxb/ern323

    Article  CAS  PubMed  Google Scholar 

  49. Cho S, Chen W, Muehlbauer FJ (2005) Constitutive expression of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Pathol 67:100–107. doi:10.1016/j.pmpp.2005.09.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hi-Tech Research and Development (863) Program of China (2006AA10Z105, 2006AA100109). We thank Dr. Dasharath Lohar for providing seeds of M. truncatula Gaertn ‘Jemalong’ A17. We also sincerely thank Dr. shuizhang Fei (Iowa state University, Ames, USA) for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangli Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Martens, S., Chen, M. et al. Cloning and characterization of a functional flavanone-3ß-hydroxylase gene from Medicago truncatula . Mol Biol Rep 37, 3283–3289 (2010). https://doi.org/10.1007/s11033-009-9913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9913-8

Keywords

Navigation