Skip to main content
Log in

Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The utilization of dwarfing genes Rht-B1b and Rht-D1b in wheat significantly increased grain yield and contributed to the “green revolution”. However, the benefit of Rht-B1b and Rht-D1b in drought environments has been debated. Although quantitative trait loci (QTL) for kernel number per spike (KN) and thousand-grain weight (TGW) have been found to be associated with Rht-B1 and Rht-D1, the confounding effect of environmental variation has made a direct association difficult to find. In this study, we used a doubled haploid population (225 lines) of Westonia × Kauz, in which both Rht-B1b (Kauz) and Rht-D1b (Westonia) segregated. The purpose of the study was to determine the interaction of Rht-B1 and Rht-D1 with grain yield components, namely KN and TGW, and to investigate genotype-by-environment interactions in glasshouse and field trials conducted in 2010 and 2011 in Western Australia. A genetic map of 1,156 loci was constructed using 195 microsatellite markers, two gene-based markers for Rht-B1 and Rht-D1, and 959 single nucleotide polymorphisms. The major QTL for TGW and KN were strongly linked to Rht-B1 and Rht-D1 loci and the positive effects were associated with the wild-type alleles, Rht-B1a and Rht-D1a. The major QTL of TGW were on chromosome 2D and 4B. The significant genetic effects (14.6–22.9 %) of TGW indicated that marker-assisted selection for TGW is possible, and markers gwm192a (206 bp) or gwm192b (236 bp) can be used as indicators of high TGW. For KN, one major QTL was detected on chromosome 4D in the analysis across three environments. The association of the wild-type alleles Rht-B1a and Rht-D1a in drought environments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DH:

Doubled haploid

GA:

Gibberellic acid

GAI:

Gibberellic acid insensitive

GW:

Grain weight per spike

KN:

Kernel number per spike

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

SSR:

Microsatellite molecular markers

TGW:

Thousand-grain weight

References

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64(6):1745–1753. doi:10.1093/jxb/ert041

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105(6):921–936. doi:10.1007/s00122-002-0994-1

    PubMed  Google Scholar 

  • Botwright T, Rebetzke G, Condon A, Richards R (2005) Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal dell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot 95(4):631–639

    Article  PubMed  CAS  Google Scholar 

  • Butler JD, Byrne PF, Mohammadi V, Chapman PL, Haley SD (2005) Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels. Crop Sci 45:939–947

    Article  CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110(20):8057–8062. doi:10.1073/pnas.1217133110

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) Plymouth Routines In Multivariate Ecological Research. PRIMER-E, v6 edn. PRIMER-E Ltd, UK

  • Conocono EA (2002) Improving yield of wheat experiencing post-anthesis water deficits through the use of shoot carbohydrate reserves. PhD thesis, University of Western Australia, Perth

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Duan J, Wu J, Liu Y, Xiao J, Zhao G, Gu Y, Jia J, Kong X (2012) New cis-regulatory elements in the Rht-D1b locus region of wheat. Funct Integr Genomics 12(3):489–500. doi:10.1007/s10142-012-0283-2

    Article  PubMed  CAS  Google Scholar 

  • Ellis ME, Spielmeyer WS, Gale KG, Rebetzke GR, Richards RR (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105(6):1038–1042. doi:10.1007/s00122-002-1048-4

    PubMed  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222. doi:10.1093/jxb/erq152

    Article  PubMed  CAS  Google Scholar 

  • Flintham JE, Borner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128(01):11–25

    Article  Google Scholar 

  • Gale MD, Marshall GA, Gregory RS, Quick JS (1981) NORIN 10 semi-dwarfism in tetraploid wheat and associated effects on yield. Euphytica 30(2):347–354. doi:10.1007/BF00033996

    Article  Google Scholar 

  • Ganeva G, Korzun V, Landjeva S, Tsenov N, Atanasova M (2005) Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 145(3):305–315. doi:10.1007/s10681-005-1742-9

    Article  CAS  Google Scholar 

  • Golabadi M, Arzani A, Mirmohammadi Maibody S, Sayed Tabatabaei B, Mohammadi S (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177(2):207–221. doi:10.1007/s10681-010-0242-8

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell Online 21(5):1328–1339. doi:10.1105/tpc.109.066969

    Article  CAS  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281

    Article  CAS  Google Scholar 

  • Huang X, Kempf H, Ganal M, Röder M (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109(5):933–943. doi:10.1007/s00122-004-1708-7

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113(4):753–766. doi:10.1007/s00122-006-0346-7

    Article  PubMed  CAS  Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96(8):1104–1109. doi:10.1007/s001220050845

    Article  CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in breed wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Leflon M, Lecomte C, Barbottin A, Jeuffroy MH, Robert N, Brancourt-Hulmel M (2005) Characterization of environments and genotypes for analyzing genotype × environment interaction. J Crop Improv 14(1–2):249–298. doi:10.1300/J411v14n01_11

    Article  Google Scholar 

  • Li P, Chen J, Wu P, Zhang J, Chu C, See D, Brown-Guedira G, Zemetra R, Souza E (2011) Quantitative trait loci analysis for the effect of Rht-B1 dwarfing gene on coleoptile length and seedling root length and number of bread wheat. Crop Sci 51(6):2561–2568. doi:10.2135/cropsci2011.03.0116

    Article  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12(12):930–932. doi:10.1007/s00335-001-1016-3

    Article  PubMed  CAS  Google Scholar 

  • Marza F, Bai G, Carver B, Zhou W (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112(4):688–698. doi:10.1007/s00122-005-0172-3

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × AC domain. Genome 48:870–883

    Article  PubMed  CAS  Google Scholar 

  • McIntyre C, Mathews K, Rattey A, Chapman S, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120(3):527–541. doi:10.1007/s00122-009-1173-4

    Article  PubMed  CAS  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112(5):787–796. doi:10.1007/s00122-005-0159-0

    Article  PubMed  CAS  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157(4):1820–1831. doi:10.1104/pp.111.183657

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinesis Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880. doi:10.1007/s00122-004-1902-7

    Article  PubMed  CAS  Google Scholar 

  • Rajaram S, Borlaug NE, van MG (2002) CIMMYT international wheat breeding. FOA corporate document repository. http://www.fao.org/DOCREP/006/Y4011E/Y4011E00.HTM

  • Rebetzke G, Condon A, Farquhar G, Appels R, Richards R (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118(1):123–137. doi:10.1007/s00122-008-0882-4

    Article  PubMed  CAS  Google Scholar 

  • Richards R (1992a) The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust J Agric Res 43:517–527

    Article  Google Scholar 

  • Richards R (1992b) The effect of dwarfing genes in spring wheat in dry environments. II. Growth, water use and water-use efficiency. Aust J Agric Res 43(3):529–539

    Article  Google Scholar 

  • Rohlf FJ (2009) Numerical taxonomy and multivariate analysis system exeter software, 2.2 edn. Applied Biostatistics Inc., New York

  • Searle S, Casella G, McCulloch C (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  • Snape J, Foulkes M, Simmonds J, Leverington M, Fish L, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154(3):401–408. doi:10.1007/s10681-006-9208-2

    Article  Google Scholar 

  • Sourdille P, Charmet G, Trottet M, Tixier MH, Boeuf C, Nègre S, Barloy D, Bernard M (1998) Linkage between RFLP molecular markers and the dwarfing genes Rht-B1 and Rht-D1 in wheat. Hereditas 128(1):41–46. doi:10.1111/j.1601-5223.1998.00041.x

    Article  CAS  Google Scholar 

  • van-Os H, Stam P, Visser RGF, van-Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Google Scholar 

  • Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127(4):333–339. doi:10.1111/j.1439-0523.2008.01518.x

    Article  Google Scholar 

  • Wang C, Rutledge J, Gianola D (1994) Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet Sel Evol 26:91–115

    Article  Google Scholar 

  • Wang R, Hai L, Zhang X, You G, Yan C, Xiao S (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118(2):313–325. doi:10.1007/s00122-008-0901-5

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski T, Gooding MJ, Ramsay L, Gregory PJ (2009) The effects of dwarfing genes on seedling root growth of wheat. J Exp Bot 60(9):2565–2573. doi:10.1093/jxb/erp107

    Article  PubMed  CAS  Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96(8):1110–1120. doi:10.1007/s001220050846

    Article  CAS  Google Scholar 

  • Worland AJ, Sayers EJ, Korzun V (2001) Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119(1–2):157–161. doi:10.1023/A:1017582122775

    Article  Google Scholar 

  • Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chang X, Jing R (2012) Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7(2):e31249

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhu J, Williams R (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723

    Article  PubMed  Google Scholar 

  • Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol 17(14):1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Youssefian S, Kirby EJM, Gale MD (1992) Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crops Res 28(3):191–210

    Article  Google Scholar 

  • Zhang J (2008) Water deficit in bread wheat: characterisation using genetic and physiological tools. PhD thesis, Murdoch University, Perth

  • Zhang J, Huang S, Fosu-Nyarko J, Dell B, McNeil M, Waters I, Moolhuijzen P, Conocono E, Appels R (2008) The genome structure of the 1-FEH genes in wheat (Triticum aestivum L.): new markers to track stem carbohydrates and grain filling QTLs in breeding. Mol Breed 22(3):339–351. doi:10.1007/s11032-008-9179-1

    Article  CAS  Google Scholar 

  • Zhang J, Dell B, Conocono E, Waters I, Setter T, Appels R (2009) Water deficits in wheat: fructosyl exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 181:843–850

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Le Gouis J, Leflon M, Rong W, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121(8):1501–1517. doi:10.1007/s00122-010-1406-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Murdoch University and Grain Research & Development Corporation ‘grant number UMU00039’. The authors acknowledge Ruilian Jing, Wei Shi, Xianshan Hu (Chinese Academy of Agricultural Science, China) and Jun Zhu (Zhe Jiang University) for their help in QTL analysis and checking the mapping data. The authors are very grateful to Irene Waters and Tim Setter (Department of Agriculture and Food, Western Australia) for providing the Westonia and Kauz double haploid lines and to Mehmet Cakir for providing 199 polymorphic SSR marker names.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjuan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Dell, B., Biddulph, B. et al. Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breeding 32, 771–783 (2013). https://doi.org/10.1007/s11032-013-9905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9905-1

Keywords

Navigation