Skip to main content
Log in

Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyse the fundamental phenomena related to the swelling behaviour of densified and thermally modified wood under changing moisture content, as well as to investigate the differences in recovery behaviour between four different methods: (i) soaking–drying cycles, (ii) soaking–drying cycles in hot water, (iii) water-soaking with continuous data logging to measure dynamic changes in thickness and (iv) humid–dry cycles at different relative humidity (RH). Methods were applied to untreated, thermally modified, densified (D) and densified + thermally modified (DTM) Scots pine sap wood samples. Soaking methods were found to produce significantly higher set-recovery results than RH cycling, with higher temperature accelerating the relaxation during soaking. Repeated cycles increased the swelling of the densified samples. The RH thresholds for set-recovery were found to be between 65 and 75 % for the D samples and between 75 and 84 % in the case of DTM samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anshari B, Guan ZW, Kitamori A, Jung K, Hassel I, Komatsu K (2011) Constr Build Mater 25:1718

    Article  Google Scholar 

  2. Armstrong LD, Kingston RST (1962) Aust J Appl Sci 13:257

    Google Scholar 

  3. Blomberg J, Persson B, Bexell U (2006) Holzforschung 60:322

    Article  CAS  Google Scholar 

  4. Boonstra MJ, Blomberg J (2007) Wood Sci Technol 41:607

    Article  CAS  Google Scholar 

  5. Dwianto W, Norimoto M, Morooka T, Tanaka F, Inoue M, Liu Y (1998) Holz Roh Werkst 56:403

    Article  Google Scholar 

  6. Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Holzforschung 53:541

    Article  CAS  Google Scholar 

  7. Fang C-H, Cloutier A, Blanchet P, Koubaa A, Mariotti N (2011) Bioresources 6:373

    CAS  Google Scholar 

  8. Fang C-H, Mariotti N, Cloutier A, Koubaa A, Blanchet P (2012) Eur J Wood Prod 70:155

    Article  CAS  Google Scholar 

  9. García Esteban L, Gril J, de Palacios P, Guindeo Casasús A (2005) Ann For Sci 62:275

    Article  Google Scholar 

  10. Gong M, Lamason C, Li L (2010) J Mater Process Technol 210:293

    Article  Google Scholar 

  11. Gong M, Li L, Chui YH, Li K, Yuan N (2008) Modelling of recovery of residual stress in densified wood. Eng Wood Prod Associat Paper 107. http://www.ewpa.com/Archive/2008/June/Paper_107.pdf. Accessed 17 Mar 2013

  12. Grossman PUA (1976) Wood Sci Technol 10:163

    Article  Google Scholar 

  13. Heger F, Groux M, Girardet F, Welzbacher C, Rapp AO, Navi P (2004) Mechanical and durability performance of THM-densified wood. In: Proceeding of the Final Workshop COST Action E22 ‘Environmental Optimisation of Wood Protection’ 22–23 March 2004, Lisboa, Portugal

  14. Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) J Mat Sci 47:3191

    Article  CAS  Google Scholar 

  15. Hillis WE, Rozsa AN (1978) Holzforschung 32:68

    Article  Google Scholar 

  16. Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Wood Fib Sci 25:224

    CAS  Google Scholar 

  17. Inoue M, Sekino N, Morooka T, Rowell RM, Norimoto M (2008) J Trop For Sci 20:273

    Google Scholar 

  18. Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Nat Mater 2:810

    Article  CAS  Google Scholar 

  19. Kamke FA, Kutnar A (2010) Wood Fib Sci 42:377

    CAS  Google Scholar 

  20. Kutnar A, Kamke FA (2012) Wood Sci Technol 46:953

    Article  CAS  Google Scholar 

  21. Kutnar A, Kamke FA, Sernek M (2009) Wood Sci Technol 43:57

    Article  CAS  Google Scholar 

  22. Kutnar A, Šernek M (2007) Zb Gozd Lesar 82:53

    Google Scholar 

  23. Laine K, Rautkari L, Hughes M (2013) Eur J Wood Prod 71:13

    Article  CAS  Google Scholar 

  24. Laine K, Kutnar A, Rautkari L, Hughes M (2013) Eur J Wood Prod 71:17

    Article  CAS  Google Scholar 

  25. Li L, Gong M, Yuan N, Li D (2013) Bioresources 8:3967

    CAS  Google Scholar 

  26. Mantanis GI, Young RA, Rowell RM (1994) Wood Sci Technol 28:119

    Article  CAS  Google Scholar 

  27. Morsing N (2000) Densification of wood. The influence of hygrothermal treatment on compression of beech perpendicular to the grain. PhD thesis. Technical University of Denmark. Department of structural engineering and materials

  28. Navi P, Girardet F (2000) Holzforschung 54:287

    Article  CAS  Google Scholar 

  29. Navi P, Heger F (2004) MRS Bull 29:332

    Article  Google Scholar 

  30. Navi P, Girardet F, Vulliemin P, Spycher M, Heger F (2007) Effect of post-treatment parameters on densified wood set-recovery. In: Proceedings of the 3rd International Symposium on Wood Machining, COST Action E35 ‘Fracture mechanics and micromechanics of wood and wood composites with regard to wood machining’ 21. 23.5.2007, Lausanne, Switzerland

  31. Norimoto M, Ota C, Akitsu H, Yamada T (1993) Wood Res 79:23

    CAS  Google Scholar 

  32. Olsson A-M, Salmén L (1997) Nordic Pulp Pap Res J 12:140

    Article  CAS  Google Scholar 

  33. Rautkari L, Hughes M (2009a) Eliminating set-recovery in densified wood using a steam heat-treatment process. In: Proceedings of the 4th European Conference on Wood Modification, Stockholm, Sweden

  34. Rautkari L, Properzi M, Pichelin F, Hughes M (2009) Wood Sci Technol 43:291

    Article  CAS  Google Scholar 

  35. Rautkari L, Kamke FA, Hughes M (2010) Wood Sci Technol 45:693

    Article  Google Scholar 

  36. Rautkari L, Milena Properzi, Pichelin F, Hughes M (2010) Wood Sci Techol 44:679

    Article  CAS  Google Scholar 

  37. Rautkari L, Laine K, Kutnar A, Medved S, Hughes M (2013) J Mater Sci 48:2370. doi:10.1007/s10853-012-7024-8

    Article  CAS  Google Scholar 

  38. Salmén L (1984) J Mater Sci 19:3090. doi:10.1007_BF01026972

    Article  Google Scholar 

  39. Tarkow H, Seborg R (1968) For Prod J 18:104

    Google Scholar 

  40. Welzbacher CR, Wehsener J, Rapp AO, Haller P (2008) Eur J Wood Prod 66:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Laine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laine, K., Belt, T., Rautkari, L. et al. Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. J Mater Sci 48, 8530–8538 (2013). https://doi.org/10.1007/s10853-013-7671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7671-4

Keywords

Navigation