Skip to main content
Log in

Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects

Thermo-mechanische Verdichtung und thermische Modifikation von Fichtenholz (Picea abies Karst) im industriellen Maßstab – Betrachtung der Dimensionsstabilität und Dauerhaftigkeit

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Heat-treatments of wood to improve selected wood properties, e.g. durability and dimensional stability, are well established industrial processes. However, the main drawbacks of thermally modified timber are the reduced strength properties. In a previous study, thermo-mechanically densified wood with increased initial strength was successfully applied to an oil-heat treatment (OHT) in laboratory scale to overcome the problem of reduced strength properties. Consequently, the up-scaling of processes to industrial scale was the objective of this study. Therefore, Norway spruce (Picea abies Karst.) was thermo-mechanically densified in laboratory scale at 140 °C, 160 °C, 180 °C, and 200 °C for 0.5 h, 1 h, 2 h, and 4 h and afterwards modified by a laboratory OHT-process at 180 °C, 200 °C, and 220 °C for 2 and 4 h. Swelling properties and biological properties were investigated on matched samples to identify suitable combinations of densification and OHT for use in outdoor application. Further on, the process-parameters assessed from laboratory scale were taken over for industrial scale production. The results show that compression-set recovery of densified and oil-heat treated spruce was almost completely eliminated by an OHT at temperatures above 200 °C, as demonstrated in laboratory tests and after 30 months natural weathering. Thus, with respect to the dimensional stability and improved durability, the industrially densified and oil-heat treated spruce timber appears to be suitable for weathered application.

Zusammenfassung

Hitzebehandlungen von Holz zur Verbesserung ausgewählter Eigenschaften, z.B. Dauerhaftigkeit und Dimensionsstabilität, sind industriell etablierte Verfahren. Der Hauptnachteil von hitzebehandeltem Holz besteht jedoch in den durch die thermische Modifikation reduzierten Festigkeitseigenschaften. Zur Überwindung dieses Nachteils wurde in einer früheren Studie thermo-mechanisch verdichtetes Holz mit durch die Verdichtung erhöhten Festigkeitseigenschaften erfolgreich einer Öl-Hitze Behandlung (OHT) im Labor unterzogen. Das Ziel der vorliegenden Arbeit war es, die im Labor erfolgreich erreichte Kombination von Verdichtung und OHT auf industriellen Maßstab zu übertragen. Dafür wurde Fichtenholz (Picea abies Karst.) bei Temperaturen von 140 °C, 160 °C, 180 °C, und 200 °C für 0.5 h, 1 h, 2 h, und 4 h im Labor verdichtet und nachfolgend bei 180 °C, 200 °C, und 220 °C für 2 und 4 h durch eine OHT im Labormaßstab vergütet, um geeignete Parameterkombinationen hinsichtlich Quelleigenschaften und Dauerhaftigkeit für einen Einsatz des Materials in bewitterter Außenanwendung zu ermitteln. Diese geeigneten Parameterkombinationen aus Optimierungsversuchen im Labor wurden für die industrielle Herstellung herangezogen. Ergebnisse aus Quellversuchen und nach 30monatiger natürlicher Bewitterung zeigen, dass das Rückerinnerungsvermögen des verdichteten Fichtenholzes durch eine OHT über 200 °C nahezu komplett unterbunden werden konnte. Ein Einsatz des industriell verdichteten und Öl-Hitze behandelten Materials im bewitterten Außeneinsatz erscheint deshalb im Hinblick auf die erreichte Dimensionsstabilisierung und die erhöhte Dauerhaftigkeit als möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akgül M, Gümüskaya E, Korkut S (2007) Crystalline structure of heat treated Scots pine (Pinus sylvestris L.) and Uludag fir (Abies nordmannia (Stev.) subsp. bornmuelleriana (Mattf.)) wood. Wood Sci Technol 41(3):281–289

    Article  CAS  Google Scholar 

  2. Bengtsson C, Jermer J, Brem F (2002) Bending strength of heat-treated spruce and pine timber. Document No. IRG/WP/02-40242. International Research Group on Wood Protection, Stockholm, Sweden

  3. Blomberg J, Persson B, Blomberg A (2005) Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Sci Technol 39:339–350

    Article  CAS  Google Scholar 

  4. Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh- Werkst 64:204–211

    Article  CAS  Google Scholar 

  5. Brischke C, Rapp AO (2004) Investigation of the suitability of silver fir (Abies alba Mill.) for thermal modification. Document No. IRG/WP/04-40275. International Research Group on Wood Protection, Stockholm, Sweden

  6. Del Menezzi CHS, Tomaselli I (2006) Contact thermal post-treatment of oriented strandboard to improve dimensional stability: A preliminary study. Holz Roh- Werkst 64:212–217

    Article  CAS  Google Scholar 

  7. DIN 52 184 (1979) Prüfung von Holz. Bestimmung der Quellung und Schwindung

  8. Dwianto W, Tanaka F, Inoue M, Norimoto M (1996) Crystallinity changes of wood by heat or steam treatment. Wood Res 83:47–49

    CAS  Google Scholar 

  9. EN 113 (1996) Wood preservatives – Determination of toxic values of wood preservatives against wood destroying Basidiomycetes cultures on agar medium

  10. EN 350-1 (1994) Durability of wood and wood-based products – Natural durability of solid wood – Part 1: guide to the principles of testing and classification of the natural durability of wood

  11. Fengel D, Wegener G (1989) Wood – Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  12. Haller P, Wehsener J (2004) Festigkeitsuntersuchungen an Fichtenpressholz (FPH). Holz Roh- Werkst 62:452–454

    Google Scholar 

  13. Heger F, Groux M, Girardet F, Welzbacher CR, Rapp AO, Navi P (2004) Mechanical and durability performance of THM-densified wood. Proceedings of COST Action E22 Final Workshop, 22–23 March 2004, Estoril, Portugal

  14. Hong BW (1984) Dynamic viscoelasticity of hot pressed wood. J Korean Wood Sci Technol 12:3–11

    Google Scholar 

  15. Hsu WE, Schwald W, Schwald J, Shields JA (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites. Part 1: steam pre-treatment. Wood Sci Technol 22:281–289

    Article  CAS  Google Scholar 

  16. Inoue M, Norimoto M, Otsuka Y, Yamada T (1991) Surface compression of coniferous lumber (II). Permanent set of the surface compression wood by a low molecular weight phenolic resin and some physical properties of the products. Mokuzai Gakkaishi 37:227–233

    CAS  Google Scholar 

  17. Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25:224–235

    CAS  Google Scholar 

  18. Ito Y, Tanahashi M, Shigematsu M, Shinoda Y, Ohta C (1998) Compressive-molding of wood by high-pressure steam-treatment: Part 1. Development of compressively molded squares from thinnings. Holzforschung 52:211–216

    Article  CAS  Google Scholar 

  19. Junghans K, Niemz P (2006) Behandlungsintensität bestimmt Thermoholzqualität. Holzzentralblatt 14:412

    Google Scholar 

  20. Kawai S, Wang Q, Sasaki H, Tanahashi M (1992) Production of compressed laminated veneer lumber by steam pressing. Proceedings of the Pacific Rim Bio-Based Composites Symposium, pp 121–128

  21. Krawczyk N (2007) Lübbenau heizt weiter ein – Produktion der Thermoholz Spreewald GmbH gewinnt an Fahrt. Holzzentralblatt 7:214

    Google Scholar 

  22. Kollmann F (1936) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin

    Google Scholar 

  23. Kubojima Y, Ohtani T, Yoshihara H (2003) Effect of shear deflection on bending properties of compressed wood. Wood Fiber Sci 36:210–215

    Google Scholar 

  24. Morsing N (1997) Densification of wood. The influence of hygrothermal treatment on compression of beech perpendicular to the grain. Doctoral thesis, Building Materials Laboratory. Technical University of Denmark

  25. Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54:287–293

    Article  CAS  Google Scholar 

  26. Nilsson T, Daniel GF (1992) On the use of % weight loss as a measure for expressing results of laboratory decay experiments. Document No. IRG/WP 92-2394. International Research Group on Wood Protection, Stockholm, Sweden

  27. Norimoto M, Ota C, Akitsu H, Yamada T (1993) Permanent fixation of bending deformation in wood by heat treatment. Wood Res 79:23–33

    CAS  Google Scholar 

  28. Poncsák S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40:647–663

    Article  CAS  Google Scholar 

  29. Rapp AO, Sailer M (2001) Oil heat treatment of wood in Germany – State of the art. European Commission, Directorate-General for Research, EUR 19885. Proceedings of the Special Seminar held in Antibes/France, 9 February 2001, 47–64

  30. Rapp AO, Brischke C, Welzbacher CR (2006) Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung 60:64–70

    Article  CAS  Google Scholar 

  31. Rep G, Pohleven F, Bucar B (2004) Characteristics of thermally modified wood in vacuum. Document No. IRG/WP/04-40287. International Research Group on Wood Protection, Stockholm, Sweden

  32. Repellin V, Guyonnet R (2003) Evaluation of heat treated beech by non-destructive testing. In: Proceedings of the first European Conference on Wood Modification. 03.–04.04.2003 in Ghent. Eds. Van Acker J., Hill C., Ghent University (RUG). pp 73–82

  33. Sailer M, Rapp AO, Leithoff H, Peek RD (2000) Vergütung von Holz durch Anwendung einer Öl-Hitze-Behandlung. Holz Roh- Werkst 58:15–22

    Article  CAS  Google Scholar 

  34. Saito F (1973a) Spring back of hot pressed wood in humidification and water-soaking tests. Mokuzai Gakkaishi 19:221–226

    Google Scholar 

  35. Saito F (1973b) Swelling pressure of hot-pressed wood. Mokuzai Gakkaishi 19:261–264

    Google Scholar 

  36. Scheffler K, Straub J, Grigull U (1981) Wasserdampftafeln. Thermodynamische Eigenschaften von Wasser und Wasserdampf bis 800 °C und 800 bar. Springer, New York Berlin Heidelberg

    Google Scholar 

  37. Seborg RM, Millet M, Stamm AJ (1945) Heat-stabilized compressed wood. Staypack Mech Eng 67:25–31

    Google Scholar 

  38. Schwarze F, Spycher M (2005) Resistance of thermo-hygro-mechanically densified wood to colonisation and degradation by brown-rot fungi. Holzforschung 59:358–363

    Article  CAS  Google Scholar 

  39. Skyba O, Schwarze F (2005) Resistance of thermo-hydro-mechanically densified wood to colonisation and degradation by brown-rot fungi. Proceedings of the Second European Conference on Wood Modification (ECWM), 6th/7th October 2005. Wood modification: Processes, Properties and Commercialisation, pp 61–64

  40. Tabarsa T, Chui YH (1997) Effects of hot-pressing on properties of white spruce. For Prod J 47:71–76

    Google Scholar 

  41. Tang X, Nakao T, Zhao G (2004). Physical properties of compressed wood fixed via different heating pathways to obtain a constant recovery. Mokuzai Gakkaishi 50:333–340

    CAS  Google Scholar 

  42. Yoshihara H, Tsunematsu S (2007) Bending and shear properties of compressed Sitka spruce. Wood Sci Technol 41:117–131

    Article  CAS  Google Scholar 

  43. Welzbacher CR, Rapp AO (2003) Thermische Verfahren: Verfahrensübergreifender Vergleich. Tagungsband der 23. Holzschutz-Tagung der DGfH am 26. und 27.03.2003 in Augsburg. München: Deutsche Gesellschaft für Holzforschung, 2003, pp 97–112

  44. Welzbacher CR, Heger F, Girardet F, Navi P, Rapp AO (2004) Decay resistance of thermo-hydro-mechanically densified wood. Final Workshop COST Action E22 ‘Environmental Optimisation of Wood Protection’ Lisboa – Portugal, 22nd–23rd March 2004, p 7

  45. Welzbacher CR, Wehsener J, Haller P, Rapp AO (2006) Biologische und mechanische Eigenschaften von verdichteter und thermisch behandelter Fichte (Picea abies). Holztechnologie 3:13–18

    Google Scholar 

  46. Zaman A, Alén R, Kotilainen R (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and Silver birch (Betula pendula) at 200–230 celsius. Wood Fiber Sci 32:138–143

    CAS  Google Scholar 

  47. Zhang Y, Cai L (2006) Effect of steam explosion on wood appearance and structure of sub-alpine fir. Wood Sci Technol 40:427–436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Welzbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welzbacher, C.R., Wehsener, J., Rapp, A.O. et al. Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale – Dimensional stability and durability aspects . Holz Roh Werkst 66, 39–49 (2008). https://doi.org/10.1007/s00107-007-0198-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-007-0198-0

Keywords

Navigation