Skip to main content

Advertisement

Log in

Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

A Correction to this article was published on 16 July 2021

This article has been updated

Abstract

Algal bioproducts are of growing interest to agriculture because of their biodegradable nature, ability to restore soil fertility, and capacity for plant growth regulation, nitrogen fixation, and carbon sequestration. Plants respond to a suite of growth hormones; auxins present in algal extracts or secreted exogenously by living algae may be partially responsible for the stimulation of plant growth. Auxins are a major class of phytohormones that influence plant growth and development. The roles of auxins in algae and in plants are well described, but studies on the role of auxins in plant-algae interactions remain scarce. This review summarizes the body of knowledge on the production of auxins and their physiological roles in seaweeds, cyanobacteria, and microalgae. Common and differential auxin-associated phenotypes of these algae, including the effect of growth conditions on their auxin production, are also described. Potential mechanisms by which auxins from algae mediate plant development at both phenotypic and molecular levels are also provided. Algal-derived auxins are an environmentally sustainable option for promoting plant growth and yield, but knowledge of their precise mechanisms of action is still rudimentary. Elucidating the pathways by which algal auxins stimulate plant responses and the means by which key environmental factors influence those pathways will help to harness the full potential of algal-derived auxins for agricultural development and resource conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available on request to the authors.

Change history

References

  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2019) Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 39:981–998

    Article  PubMed  Google Scholar 

  • Ahmad N, Fatma T (2017) Production of indole-3-acetic acid by cyanobacterial strains. Nat Products J 7:112–120

    Article  CAS  Google Scholar 

  • Ahmad MR, Winter A (1968) Studies on the hormonal relationships of algae in pure culture. Planta 78:277–286

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Stal LJ, Hasnain S (2010) Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9. J Microbiol Biotechnol 20:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Stal LJ, Hasnain S (2014) Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria. J Microbiol Biotechnol 24:1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Alsenani F, Wass TJ, Ma R, Eltanahy E, Netzel ME, Schenk PM (2019) Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae. Algal Res 37:320–335

    Article  Google Scholar 

  • Anahas AMP, Muralitharan G (2019) Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production. Renew Energy 130:749–761

    Article  CAS  Google Scholar 

  • Aremu AO, Masondo NA, Rengasamy KR, Amoo SO, Gruz J, Bíba O, Šubrtová M, Pěnčík A, Novák O, Doležal K, van Staden J (2015) Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 241:1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59:3019–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astier J, Loake G, Velikova V, Gaupels F (2016) Interplay between NO signalling, ROS and the antioxidant system in plants. Front Plant Sci 7:1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu SV, Ashokkumar B, Sivakumar N, Sudhakarsamy P, Varalakshmi P (2013) Indole-3-acetic acid from filamentous cyanobacteria: screening, strain identification and production. J Sci Ind Res 72:581–584

    CAS  Google Scholar 

  • Bajguz A (2011) Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch Environ Contam Toxicol 60:406–416

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Puente ME, Myrold DD, Toledo G (1998) In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol Ecol 26:165–170

    Article  CAS  Google Scholar 

  • Basu S, Sun H, Brian L, Quatrano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol 130:292–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger KD, Quatrano RS (2000) Polarity: the role of localized secretion. Curr Opin Plant Biol 3:67–72

    Article  CAS  PubMed  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Benítez García I, Dueñas Ledezma AK, Martínez Montaño E, Salazar Leyva JA, Carrera E, Osuna Ruiz I (2020) Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy 10:866

    Article  CAS  Google Scholar 

  • Bentley JA (1960) Plant hormones in marine phytoplankton, zooplankton and sea water. J Mar Biol Assoc U K 39:433–444

    Article  Google Scholar 

  • Bentley-Mowat JA (1967) Do plant hormones affect the development and ecology of unicellular algae? Wiss Z Univ Rostock Math Nat Wiss Reihe 16:445–449

    Google Scholar 

  • Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188-189:97–105

    Article  CAS  PubMed  Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  CAS  Google Scholar 

  • Bogaert KA, Blommaert L, Ljung K, Beeckman T, De Clerck O (2019) Auxin function in the brown alga Dictyota dichotoma. Plant Physiol 179:280–299

    Article  CAS  PubMed  Google Scholar 

  • Boopathi T, Balamurugan V, Gopinath S, Sundararaman M (2013) Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis. J Plant Growth Regul 32:758–766

    Article  CAS  Google Scholar 

  • Bradley PM (1991) Plant hormones do have a role in controlling growth and development of algae. J Phycol 27:317–321

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Buggeln RG, Bal AK (1977) Effects of auxins and chemically related non-auxins on photosynthesis and chloroplast ultrastructure in Alaria esculenta (Laminariales). Can J Bot 55:2098–2105

    Article  CAS  Google Scholar 

  • Chu W-L (2017) Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Eur J Phycol 52:419–437

    Article  CAS  Google Scholar 

  • Chung T-Y, Kuo C-Y, Lin W-J, Wang W-L, Chou J-Y (2018) Indole-3-acetic-acid-induced phenotypic plasticity in Desmodesmus algae. Sci Rep 8:10270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cock JM, Sterck L, Rouze P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Conrad H, Saltman P, Eppley R (1959) Effects of auxin and gibberellic acid on growth of Ulothrix. Nature 184:556–557

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Pool PY, Peraza-Echeverria S, Ku-González ÁF, Herrera-Valencia VA (2016) The phytohormone abscisic acid increases triacylglycerol content in the green microalga Chlorella saccharophila (Chlorophyta). Algae 31:267–276

    Article  CAS  Google Scholar 

  • Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338

    Article  CAS  PubMed  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Crouch IJ, van Staden J (1991) Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J Plant Physiol 137:319–322

    Article  Google Scholar 

  • Czerpak R, Bajguz A (1993) Effect of auxins and cytokinins on protein and saccharides extracellular excretion in Chlorella pyrenoidosa. Pol Arch Hydrobiol 40:249–254

    CAS  Google Scholar 

  • Czerpak R, Bajguz A (1997) Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc Bot Pol 66:41–46

    Article  CAS  Google Scholar 

  • Damodaran S, Strader LC (2019) Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Front Plant Sci 10:851

    Article  PubMed  PubMed Central  Google Scholar 

  • Dao G-H, Wu G-X, Wang X-X, Zhuang L-L, Zhang T-Y, Hu H-Y (2018) Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour Technol 247:561–567

    Article  CAS  PubMed  Google Scholar 

  • Dawes CJ (1971) Indole-3-acetic acid in the green algal coenocyte Caulerpa prolifera (Chlorophyceae, Siphonales). Phycologia 10:375–379

    Article  CAS  Google Scholar 

  • De Saeger J, Van Praet S, Vereecke D, Park J, Jacques S, Han T, Depuydt S (2020) Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J Appl Phycol 32:573–597

    Article  CAS  Google Scholar 

  • De Smet I, Voß U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodgman C, Bock R, Bennett M, Jürgens G, Beeckman T (2011) Unraveling the evolution of auxin signaling. Plant Physiol 155:209–221

    Article  PubMed  CAS  Google Scholar 

  • Di DW, Zhang C, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78:275–285

    Article  CAS  Google Scholar 

  • Dibb-Fuller JE, Morris DA (1992) Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 186:219–226

    Article  CAS  PubMed  Google Scholar 

  • Do TCV, Tran DT, Le TG, Nguyen QT (2020) Characterization of endogenous auxins and gibberellins produced by Chlorella sorokiniana TH01 under phototrophic and mixtrophic cultivation modes toward applications in microalgal biorefinery and crop research. J Chemistry 2020:4910621

    Article  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Annal Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • du Buy HG, Olson RA (1937) The presence of growth regulators during the early development of Fucus. Am J Bot 24:609–611

    Article  Google Scholar 

  • Dunlap JR, Robacker KM (1988) Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture media. Plant Physiol 88:379–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S (2018) Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci 9:–428

  • Fadel AH, Gerung GS, Suryati E, Rumengan IF (2013) The effects of stimulant growth hormones on tissue culture of seaweed Kappaphycus alvarezii in vitro. Aquat Sci Manag 1:77–84

    Article  Google Scholar 

  • Florenzano G, Balloni W, Materassi R (1978) Algal organic matter and plant growth. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Zweite Naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft, der Technologie und des Umweltschutzes 133:379–384

    Article  CAS  Google Scholar 

  • Fries L (1977) Growth regulating effects of phenylacetic acid and p-hydroxyphenylacetic acid on Fucus spiralis L. (Phaeophyceae, Fucales) in axenic culture. Phycologia 16:451–455

    Article  CAS  Google Scholar 

  • Fries L (1984) Induction of plantlets in axenically cultivated rhizoids of Fucus spiralis. Can J Bot 62:1616–1620

    Article  CAS  Google Scholar 

  • Fries L (1988) Ascophyllum nodosum (Phaeophyta) in the axenic culture and its response to the endophytic fungus Mycosphaerella ascophylli and epiphytic bacteria. J Phycol 24:333–337

    Google Scholar 

  • Gao Y, Dai X, Aoi Y, Takebayashi Y, Yang L, Guo X, Zeng Q, Yu H, Kasahara H, Zhao Y (2020) Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. J Genet Genomics 47:157–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavassi MA, Dodd IC, Puértolas J, Silva GS, Carvalho RF, Habermann G (2020) Aluminum-induced stomatal closure is related to low root hydraulic conductance and high ABA accumulation. Environ Exp Bot 179:104233

    Article  CAS  Google Scholar 

  • Gayathri M, Kumar PS, Prabha AML, Muralitharan G (2015) In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Res 7:100–105

    Article  Google Scholar 

  • Ghaderiardakani F, Collas E, Damiano DK, Tagg K, Graham NS, Coates JC (2019) Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci Rep 9:1983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorham J (1979) Laboratory growth studies on Sargassum muticum (Yendo) Fensholt. III. Effects of auxins and anti-auxins on extension growth. Bot Mar 22:273–280

    Article  CAS  Google Scholar 

  • Górka B, Wieczorek PP (2017) Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. J Chromatogr B 1057:32–39

    Article  CAS  Google Scholar 

  • Grossmann K (2007) Auxin herbicide action: lifting the veil step by step. Plant Signal Behav 2:421–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Grotbeck L, Vance BD (1972) Endogenous levels of indole-3-acetic acid in synchronous cultures of Chlorella pyrenoidosa. J Phycol 8:272–275

    CAS  Google Scholar 

  • Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B (2011) Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method. Plant Physiol Biochem 49:1259–1263

    Article  CAS  PubMed  Google Scholar 

  • Halliday KJ, Martínez-García JF, Josse E-M (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:a001586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Article  CAS  Google Scholar 

  • Hashtroudi MS, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2013) Endogenous auxins in plant growth-promoting Cyanobacteria—Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386

    Article  CAS  Google Scholar 

  • Hoyle FC, Murphy DV, Brookes PC (2008) Microbial response to the addition of glucose in low-fertility soils. Biol Fertil Soils 44:571–579

    Article  CAS  Google Scholar 

  • Huang A, Wang Y, Liu Y, Wang G, She X (2020) Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. J Integr Plant Biol 62:912–926

    Article  CAS  PubMed  Google Scholar 

  • Hunt RW, Chinnasamy S, Bhatnagar A, Das KC (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl Biochem Biotechnol 162:2400–2414

    Article  CAS  PubMed  Google Scholar 

  • Hunt RW, Chinnasamy S, Das KC (2011) The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Appl Biochem Biotechnol 164:1350–1365

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38:85–92

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Krischke M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61:361–369

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WP, Falkenstein K, Hamilton RH (1985) Nature and amount of auxin in algae - IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol 78:844–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäger K, Bartók T, Ördög V, Barnabás B (2010) Improvement of maize (Zea mays L.) anther culture responses by algae-derived natural substances. S Afr J Bot 76:511–516

    Article  CAS  Google Scholar 

  • Jaiswal A, Das K, Koli DK, Pabbi S (2018) Characterization of cyanobacteria for IAA and siderophore production and their effect on rice seed germination. Int J Curr Microbiol App Sci 7:5212–5222

    Google Scholar 

  • Ji X, Cheng J, Gong D, Zhao X, Qi Y, Su Y, Ma W (2018) The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci Total Environ 633:593–599

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Scherp P, Heimann K, Hasenstein KH (2008) Auxin and cytoskeletal organization in algae. Cell Biol Int 32:542–545

    Article  CAS  PubMed  Google Scholar 

  • Jirásková D, Poulíčková A, Novák O, Sedláková K, Hradecká V, Strnad M (2009) High-throughput screening technology for monitoring phytohormone production in microalgae. J Phycol 45:108–118

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Schreiber BMN (1997) Role and function of cytokinin oxidase in plants. Plant Growth Regul 23:123–134

    Article  CAS  Google Scholar 

  • Jones B, Gunnerås SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothi KBL (2016) Study of herbicidal effect of 2,4-D on growth and cellular metabolites in cyanobacterium Synechococcus aeruginosus from rice fields. J Algal Biomass Util 7:1–3

    CAS  Google Scholar 

  • Kai T, Nimura K, Yasui H, Mizuta H (2006) Regulation of sorus formation by auxin in Laminariales sporophyte. J Appl Phycol 18:95

    Article  CAS  Google Scholar 

  • Kapoor K, Sharma VK (1981) Effect of growth-promoting chemicals on growth, nitrogen fixation and heterocyst frequency of a blue-green alga. Zeitschrift für Allgemeine Mikrobiologie 21:305–311

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kasahara H (2016) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80:34–42

    Article  CAS  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan W et al (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Khasin M, Cahoon RR, Nickerson KW, Riekhof WR (2018) Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230. PLoS One 13:e0205227

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SY (2007) Recent advances in ABA signaling. J Plant Biol 50:117–121

    Article  CAS  Google Scholar 

  • Kiseleva AA, Tarachovskaya ER, Shishova MF (2012) Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59:595–610

    Article  CAS  Google Scholar 

  • Klämbt D, Knauth B, Dittmann I (1992) Auxin dependent growth of rhizoids of Chara globularis. Physiol Plant 85:537–540

    Article  Google Scholar 

  • Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul 22:79–85

    Article  CAS  Google Scholar 

  • Kobayashi Y, Ando H, Hanaoka M, Tanaka K (2016) Abscisic acid participates in the control of cell cycle initiation through heme homeostasis in the unicellular red alga Cyanidioschyzon merolae. Plant Cell Physiol 57:953–960

    Article  CAS  PubMed  Google Scholar 

  • Kobbia IA, El-Sharouny HM (1985) Interactions between three blue-green algae and herbicide 2,4-D in culture media. J Basic Microbiol 25:381–385

    Article  CAS  Google Scholar 

  • Kolachevskaya OO, Lomin SN, Arkhipov DV, Romanov GA (2019) Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep 38:681–698

    Article  CAS  PubMed  Google Scholar 

  • Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlova TA, Hardy BP, Krishna P, Levin DB (2017) Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res 27:325–334

    Article  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Labeeuw L, Khey J, Bramucci AR, Atwal H, de la Mata AP, Harynuk J, Case RJ (2016) Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Front Microbiol 7:828

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leasure CD, Chen Y-P, He Z-H (2013) Enhancement of indole-3-acetic acid photodegradation by vitamin B6. Mol Plant 6:1992–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89:895–905

    Article  CAS  PubMed  Google Scholar 

  • Li T, Wang C, Miao J (2007) Identification and quantification of indole-3-acetic acid in the kelp Laminaria japonica Areschoug and its effect on growth of marine microalgae. J Appl Phycol 19:479-484

  • Li J, Yang Y, Chai M, Ren M, Yuan J, Yang W, Dong Y, Liu B, Jian Q, Wang S, Peng B, Yuan H, Fan H (2020) Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice. Plant Sci 298:110545

    Article  CAS  PubMed  Google Scholar 

  • Lien T, Pettersen R, Knutsen G (1971) Effects of indole-3-acetic acid and gibberellin on synchronous cultures of Chlorella fusca. Physiol Plant 24:185–190

    Article  CAS  Google Scholar 

  • Lim S-L, Chu W-L, Phang S-M (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  PubMed  Google Scholar 

  • Lin W-J, Ho H-C, Chu S-C, Chou J-Y (2020) Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta). PeerJ 8:e8623

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Qiu W, Song Y (2016) Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Article  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Chen L, Lu M, Chen G, Zhang L (2010) Extraction and analysis of auxins in plants using dispersive liquid−liquid microextraction followed by high-performance liquid chromatography with fluorescence detection. J Agric Food Chem 58:2763–2770

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regul 32:219–230

    Article  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2016) Algae derived single-cell proteins: economic cost analysis and future prospects. In: Singh Dhillon G (ed) Protein Byproducts. Academic Press, pp 275–301

  • Malka SK, Cheng Y (2017) Possible interactions between the biosynthetic pathways of indole glucosinolate and auxin. Front Plant Sci 8:2131

    Article  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mansouri H, Talebizadeh R (2017) Effects of indole-3-butyric acid on growth, pigments and UV-screening compounds in Nostoc linckia. Phycol Res 65:212–216

    Article  CAS  Google Scholar 

  • Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A (2020) Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci Total Environ 724:137960

    Article  CAS  PubMed  Google Scholar 

  • Maruyama A, Maeda M, Simidu U (1989) Microbial production of auxin indole-3-acetic acid in marine sediments. Mar Ecol Prog Ser 58:69–75

    Article  CAS  Google Scholar 

  • Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazhar S, Cohen JD, Hasnain S (2013) Auxin producing non-heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol 53:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Mazur H (1998) Determination of indole-3-acetic acid in sediments of the southern Baltic Sea. Oceanologia 40:117–124

    Google Scholar 

  • Mazur H, Konop A, Synak R (2001) Indole-3-acetic acid in the culture medium of two axenic green microalgae. J Appl Phycol 13:35–42

    Article  CAS  Google Scholar 

  • Mishra AK, Tiwari DN (1986) Effect of tryptophan on 2,4-dichlorophenoxyacetic acid toxicity in the nitrogen-fixing-cyanobacterium Nostoc linckia. J Basic Microbiol 26:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Tiwari DN, Rai AN (eds) (2018) Cyanobacteria: From Basic Science to Applications. Academic Press, London

    Google Scholar 

  • Mishra SK, Singh J, Pandey AR, Dwivedi N (2019) Indole-3-acetic acid production by the cyanobacterium Fisherella muscicola NDUPC001. Curr Sci 116:1233–1237

    Article  CAS  Google Scholar 

  • Mógor ÁF, Ördög V, Lima GPP, Molnár Z, Mógor G (2018) Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J Appl Phycol 30:453–460

    Article  CAS  Google Scholar 

  • Mohsen AF, Khaleafa AF, Hashem MA, Metwalli A (1974) Effect of some auxins on growth, reproduction, amino acid, fat and sugar contents in Ulva fasciata Delile. (Part II). Bot Mar 17:213–217

    CAS  Google Scholar 

  • Mousavi P, Morowvat MH, Montazeri-Najafabady N, Abolhassanzadeh Z, Mohagheghzadeh A, Hamidi M, Niazi A, Ghasemi Y (2016) Investigating the effects of phytohormones on growth and β-carotene production in a naturally isolates stain of Dunaliella salina. J Appl Pharm Sci 6:164–171

    Article  CAS  Google Scholar 

  • Mukherjee A, Islam M, Nasiruddin K, Banerjee P (2015) Study on callus initiation and plantlet regeneration ability of some rice genotypes. Int J Sci Technol Res 4:354–361

    Google Scholar 

  • Müller A, Weiler EW (2000) Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta 211:855–863

    Article  PubMed  Google Scholar 

  • Munguía-Rodríguez AG, López-Bucio JS, Ruiz-Herrera LF, Ortiz-Castro R, Guevara-García ÁA, Marsch-Martínez N, Carreón-Abud Y, López-Bucio J, Martínez-Trujillo M (2020) YUCCA4 overexpression modulates auxin biosynthesis and transport and influences plant growth and development via crosstalk with abscisic acid in Arabidopsis thaliana. Genet Mol Biol 43:1

    Article  CAS  Google Scholar 

  • Muñoz J, Cahue-López AC, Patiño R, Robledo D (2006) Use of plant growth regulators in micropropagation of Kappaphycus alvarezii (Doty) in airlift bioreactors. J Appl Phycol 18:209–218

    Article  CAS  Google Scholar 

  • Mustafa E-M, Phang S-M, Chu W-L (2012) Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol 24:953–963

    Article  CAS  Google Scholar 

  • Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D (2018) Origin and evolution of the nuclear auxin response system. eLife 7:e33399

    Article  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:e258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neveux N, Nugroho AA, Roberts DA, Vucko MJ, de Nys R (2020) Selecting extraction conditions for the production of liquid biostimulants from the freshwater macroalga Oedogonium intermedium. J Appl Phycol 32:539–551

    Article  CAS  Google Scholar 

  • Nimura K, Mizuta H (2002) Inducible effects of abscisic acid on sporophyte discs from Laminaria japonica Areschoug (Laminariales, Phaeophyceae). J Appl Phycol 14:159–163

    Article  CAS  Google Scholar 

  • Noble A, Kisiala A, Galer A, Clysdale D, Emery RN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    Article  CAS  Google Scholar 

  • Nonhebel HM (2015) Tryptophan-independent indole-3-acetic acid synthesis: critical evaluation of the evidence. Plant Physiol 169:1001–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci 90:10355–10359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtaka K, Hori K, Kanno Y, Seo M, Ohta H (2017) Primitive auxin response without TIR1 and Aux/IAA in the Charophyte alga Klebsormidium nitens. Plant Physiol 174:1621–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek JV (1940) Auxin in marine algae. Plant Physiol 15:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K (2009) The evolution of nuclear auxin signalling. BMC Evol Biol 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Park W-K, Yoo G, Moon M, Kim CW, Choi Y-E, Yang J-W (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  PubMed  Google Scholar 

  • Phang S, Chui Y, Kumaran G, Jeyaratnam S, Hashim M (2001) High rate algal ponds for treatment of wastewater: a case study for the rubber industry. Photosynth Microorg Environ Biotechnol:51–76

  • Phang S-M, Chu W-L, Rabiei R (2015) Phycoremediation. In: Sahoo D, Seckbach J (eds) The Algae World. Springer, Dordrecht, pp 357–389

    Chapter  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Bralska M, Talarek-Karwel M (2018) Growth, metabolite profile, oxidative status, and phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. J Plant Growth Regul 37:1159–1174

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, Zambrzycka-Szelewa E, Sienkiewicz A (2020) Auxins and cytokinins regulate phytohormone homeostasis and thiol-mediated detoxification in the green alga Acutodesmus obliquus exposed to lead stress. Sci Rep 10:1–14

    Article  CAS  Google Scholar 

  • Prasad PVD (1982) Effect of some growth substances on the growth of green algae. Cryptogam Algol 4:315–321

    Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria – possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Nain L (2010) Modulation of IAA production in cyanobacteria by tryptophan and light. Pol J Microbiol 59:99–105

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Hossain F, Babu S, Bidyarani N, Adak A, Verma S, Shivay YS, Nain L (2015) Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. S Afr J Plant Soil 32:199–207

    Article  Google Scholar 

  • Prieto C, Rosa E, Cordoba C, Nancy M, Montenegro J, Andres M, González-Mariño GE (2011) Production of indole-3-acetic acid in the culture medium of microalga Scenedesmus obliquus (UTEX 393). J Braz Chem Soc 22:2355–2361

    Article  Google Scholar 

  • Pringsheim EG (1946) The biphasic or soil-water culture method for growing algae and flagellata. J Ecol 33:193–204

    Article  Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae–A review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Provasoli L, McLaughlin J, Droop M (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428

    Article  CAS  PubMed  Google Scholar 

  • Raheem A, Shaposhnikov A, Belimov AA, Dodd IC, Ali B (2018) Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress. Arch Agron Soil Sci 64:574–587

    Article  CAS  Google Scholar 

  • Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1:1037379

    Article  CAS  Google Scholar 

  • Ranglová K, Lakatos GE, Manoel JA, Grivalský T, Estrella FS, Fernández FG, Molnar Z, Ördög V, Masojídek J (2021) Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res 53:102136

    Article  Google Scholar 

  • Rapparini F, Tam YY, Cohen JD, Slovin JP (2002) Indole-3-acetic acid metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature. Plant Physiol 128:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (2013) Polar auxin transport in relation to long-distance transport of nutrients in the Charales. J Exp Bot 64:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. J Appl Phycol 20:423–429

    Article  CAS  Google Scholar 

  • Renuka N, Guldhe A, Prasanna R, Singh P, Bux F (2018a) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273

    Article  CAS  PubMed  Google Scholar 

  • Renuka N, Guldhe A, Singh P, Bux F (2018b) Combined effect of exogenous phytohormones on biomass and lipid production in Acutodesmus obliquus under nitrogen limitation. Energy Convers Manag 168:522–528

    Article  CAS  Google Scholar 

  • Ribnicky DM, Cohen JD, Hu WS, Cooke TJ (2002) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214:505–509

    Article  CAS  PubMed  Google Scholar 

  • Romanenko KO, Kosakovskaya IV, Romanenko PO (2016) Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Int J Algae 18:179–201

    Article  Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J Plant Physiol 146:295–302

    Article  CAS  Google Scholar 

  • Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M (2003) Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens. Development 130:4835–4846

    Article  CAS  PubMed  Google Scholar 

  • Salama E-S, Kabra AN, Ji M-K, Kim JR, Min B, Jeon B-H (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103

    Article  CAS  PubMed  Google Scholar 

  • Sassi M, Ruberti I, Vernoux T, Xu J (2013) Shedding light on auxin movement: light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signal Behav 8:e23355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sati D, Pandey SC, Pande V, Upreti S, Gouri V, Joshi T, Gangola S, Debbarma P, Pandey A, Samant M (2020) Toward an enhanced understanding of plant growth promoting microbes for sustainable agriculture. In: De Mandal S, Bhatt P (eds) Recent Advancements in Microbial Diversity. Academic Press, NY, pp 87–112

  • Saygideger SD, Okkay O (2008) Effect of 2, 4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells. J Environ Biol 29:175–178

    CAS  PubMed  Google Scholar 

  • Serban EA, Diaconu I, Mirea CM, Ruse E, Nechifor G (2016) Partition of indole-3-acetic acid in biphasic systems. Rev Chim 67:634–638

    CAS  Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shah MMR (2019) Astaxanthin Production by Microalgae Haematococcus pluvialis through wastewater treatment: waste to resource. In: Gupta SK, Bux F (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham, pp 17–39

    Chapter  Google Scholar 

  • Shariatmadari Z, Riahi H, Abdi M, Hashtroudi MS, Ghassempour AR (2015) Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J Appl Phycol 27:2279–2287

    Article  Google Scholar 

  • Shi P, Geng S, Feng T, Wu H (2018) Effects of Ascophyllum nodosum extract on growth and antioxidant defense systems of two freshwater microalgae. J Appl Phycol 30:851–859

    Article  Google Scholar 

  • Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot Rev 30:92–128

    Article  CAS  Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohn JK (2001) Factors affecting pollen embryogenesis of rice anther culture. Int Rice Res Notes 21:41–42

    Google Scholar 

  • Somerville C, Meyerowitz E (2007) Arabidopsis Book vol 2007. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Stirk WA, van Staden J (1996) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508

    Article  CAS  Google Scholar 

  • Stirk WA, van Staden J (2020) Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 44:107612

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Ördög V, van Staden J, Jäger K (2002) Cytokinin- and auxin-like activity in Cyanophyta and microalgae. J Appl Phycol 14:215–221

    Article  CAS  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  CAS  Google Scholar 

  • Stirk WA, Novák O, Hradecká V, Pĕnčík A, Rolčík J, Strnad M, van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur J Phycol 44:231–240

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Novák O, Rolčík J, Strnad M, Bálint P, van Staden J (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Turečková V, Strnad M, Ordög V, van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Strnad M, van Staden J, Ördög V (2018) Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. Eur J Phycol 53:273–279

    Article  CAS  Google Scholar 

  • Stirk WA, Tarkowská D, Gruz J, Strnad M, Ördög V, van Staden J (2019) Effect of gibberellins on growth and biochemical constituents in Chlorella minutissima (Trebouxiophyceae). S Afr J Bot 126:92–98

    Article  CAS  Google Scholar 

  • Stirk WA, Rengasamy KR, Kulkarni MG, van Staden J (2020) Plant Biostimulants from seaweed: an overview. In: Geelen D, Xu L (eds) The Chemical Biology of Plant Biostimulants. John Wiley & Sons Ltd, London, pp 33–55

    Google Scholar 

  • Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116

    Article  Google Scholar 

  • Sztein AE, Ilić N, Cohen JD, Cooke TJ (2002) Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: the effect of wounding on the biosynthetic pathway. Plant Growth Regul 36:201–207

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant Physiology, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tan C-Y, Nik Sulaiman NM, Loh SK, Phang S-M (2016) Chlorella biomass production in annular photobioreactor using palm oil mill effluent (POME): effect of hydrodynamics and mass transfer, irradiance, aeration rate and POME concentration. J Oil Palm Res 28:496–509

    Article  CAS  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tarakhovskaya ER, Kang EJ, Kim KY, Garbary DJ (2013) Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae). Russ J Plant Physiol 60:176–183

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

  • Tiwari DN, Pandey AK, Mishra AK (1981) Action of 2,4-dichlorophenoxyacetic acid and rifampicin on heterocyst differentiation in the blue-green alga, Nostoc linckia. J Biosci 3:33–39

  • Tiwari S, Patel A, Prasad SM (2020) Phytohormone up-regulates the biochemical constituent, exopolysaccharide and nitrogen metabolism in paddy-field cyanobacteria exposed to chromium stress. BMC Microbiol 20:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh CT, Tran TH, Bui TV (2017) Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd. AIP Conference Proceedings 1878:020017

    Article  CAS  Google Scholar 

  • Tripathy SK, Swain D, Mohapatra P, Prusti AM, Sahoo B, Panda S, Dash M, Chakma B, Behera SK (2019) Exploring factors affecting anther culture in rice (Oryza sativa L.). J Appl Biol Biotechnol 7:87–92

    Article  CAS  Google Scholar 

  • Udayan A, Arumugam M (2017) Selective enrichment of Eicosapentaenoic acid (20:5n-3) in N. oceanica CASA CC201 by natural auxin supplementation. Bioresour Technol 242:329–333

    Article  CAS  PubMed  Google Scholar 

  • Vadiveloo A, Nwoba EG, Moheimani NR (2019) Viability of combining microalgae and macroalgae cultures for treating anaerobically digested piggery effluent. J Environ Sci 82:132–144

    Article  Google Scholar 

  • Van Den Hende S, Beelen V, Julien L, Lefoulon A, Vanhoucke T, Coolsaet C, Sonnenholzner S, Vervaeren H, Rousseau DPL (2016) Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study. Bioresour Technol 218:969–979

    Article  CAS  Google Scholar 

  • Van der Wey HG (1933) On the occurrence of growth substance in marine algae. Proc K Akad Wetensch Amsterdam 36:759–760

    Google Scholar 

  • Vance BD (1987) Phytohormone effects on cell division in Chlorella pyrenoidosa Chick (TX-7-11-05) (Chlorellaceae). J Plant Growth Regul 5:169–173

    Article  CAS  Google Scholar 

  • Varalakshmi P, Malliga P (2012) Evidence for production of Indole-3-acetic acid from a fresh water cyanobacteria (Oscillatoria annae) on the growth of H. annus. Int J Sci Res Publ 2:1–15

    Google Scholar 

  • Viaene T, Delwiche CF, Rensing SA, Friml J (2013) Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci 18:5–10

    Article  CAS  PubMed  Google Scholar 

  • Wally OSD, Critchley AT, Hiltz D, Craigie JS, Han X, Zaharia LI, Abrams SR, Prithiviraj B (2013) Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J Plant Growth Regul 32:324–339

    Article  CAS  Google Scholar 

  • Wang Q, Li X, Tang L, Fei Y, Pan Y, Sun L (2020) Paper-based electroanalytical devices for in situ determination of free 3-indoleacetic acid and salicylic acid in living Pyropia haitanensis thallus under various environmental stresses. J Appl Phycol 32:485–497

    Article  CAS  Google Scholar 

  • Wenz J, Davis JG, Storteboom H (2019) Influence of light on endogenous phytohormone concentrations of a nitrogen-fixing Anabaena sp. cyanobacterium culture in open raceways for use as fertilizer for horticultural crops. J Appl Phycol 31:3371–3384

    Article  CAS  Google Scholar 

  • Wisniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883–883

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254:998

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Gao Z, Du H, Lin B, Yan Y, Li G, Guo Y, Fu S, Wei G, Wang M, Cui M (2018) The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains. J Gen Appl Microbiol 64:42–49

    Article  CAS  PubMed  Google Scholar 

  • Xa TT, Lang NT (2011) Rice breeding for high grain quality through anther culture. Omonrice 18:68–72

    Google Scholar 

  • Yamaguchi K (1996) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502

    Article  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yokoya NS, Handro W (1996) Effects of auxins and cytokinins on tissue culture of Grateloupia dichotoma (Gigartinales, Rhodophyta). Hydrobiologia 326:393–400

    Article  Google Scholar 

  • Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398:339–347

    Article  Google Scholar 

  • Yokoya NS, Stirk WA, van Staden J, Novák O, Turečková V, Pěnčí k A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198-1205

  • Yokoya NS, Ávila M, Piel MI, Villanueva F, Alcapan A (2014) Effects of plant growth regulators on growth and morphogenesis in tissue culture of Chondracanthus chamissoi (Gigartinales, Rhodophyta). J Appl Phycol 26:819–823

    Article  CAS  Google Scholar 

  • Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2017) The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol 239:87–96

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z-C, Liu P, Saenkham P, Kerr K, Nester EW (2008) Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 190:494–507

    Article  CAS  PubMed  Google Scholar 

  • Yuan T-T, Xu H-H, Zhang K-X, Guo T-T, Lu Y-T (2014) Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ 37:1338–1350

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, van Duijn B (2014) Cellular auxin transport in algae. Plants 3:58–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Yamane H, Chapman DJ (1993) The phytohormone profile of the red alga Porphyra perforata. Bot Mar 36:257–266

    Article  CAS  Google Scholar 

  • Zhang Y, Yin H, Zhao X, Wang W, Du Y, He A, Sun K (2014) The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr Polym 113:446–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yin W, Ma D, Liu X, Xu K, Liu J (2021) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol 33:13–23

    Article  CAS  Google Scholar 

  • Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Záveská Drábková L, Novák O, Motyka V (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann Bot 119:151–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to the Higher Institution Centre of Excellence (HICoE) Phase II Fund (IOES-2014F), Ministry of Education Malaysia, for their support.

Funding

This study was funded by the Sunway University under research support for PhD Studentship PGSUREC 2019/057.

Author information

Authors and Affiliations

Authors

Contributions

C-YT, ICD, and SR conceived and designed the structure of the review. C-YT conducted the literature search and data analysis and drafted the entire manuscript. All authors revised and edited the manuscript.

Corresponding author

Correspondence to Shyamala Ratnayeke.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake. The spelling of the word "physiological" in the Abstract was misspelled as "phsiological”. The original article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, CY., Dodd, I.C., Chen, J.E. et al. Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview. J Appl Phycol 33, 2995–3023 (2021). https://doi.org/10.1007/s10811-021-02475-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02475-3

Keywords

Navigation