Skip to main content
Log in

Regulation of Sorus Formation by Auxin in Laminariales Sporophyte

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Young sporophytes of Laminaria japonica Areshoug were cultured in six indole-acetic acid (IAA) concentrations (0, 10−8, 10−7, 10−6, 10−5, 10−4 M) to examine the effect of auxin on growth. The effects of auxin on sorus formation were also examined by using discs taken from the adult sporophyte. The auxin contents and IAA oxidase activities in the thallus and sorus parts of the sporophyte were determined with the blade and sporophyll of other Laminariales plants, Undaria pinnatifida (Harvey) Suringar and Alaria crassifolia Kjellman. The young sporophytes of L. japonica showed highest elongation rate in 10−5 M IAA. In contrast, the sorus formation on the discs cultured in 10−5 M IAA was markedly delayed in comparison with other concentrations, indicating that sorus formation was suppressed by IAA. Free and conjugated auxin contents were lower in the reproductive parts than in the vegetative parts. In three Laminariales sporophytes, IAA oxidase activity was about 3–9 times higher in the reproductive parts than in the vegetative parts. Taken together these results suggest that the growth and reproduction of Laminariales sporophytes are regulated by internal auxin levels. Elucidating the regulation mechanism is likely to provide information that is important for the management of plant production and the assessment of the physiological status of plants in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Uchiyama MR, Sato R (1972) Isolation and identification of native auxins in marine algae. Agric. Biol. Chem. 36: 2259–2260.

    CAS  Google Scholar 

  • Abe H, Uchiyama M, Sato R (1974) Isolation of phenylacetic acid and its p-hydroxy derivative as auxin-like substances from Undaria pinnatifida. Agric. Biol. Chem. 38: 897–898.

    CAS  Google Scholar 

  • Akiyama K (1977) Preliminary report on Streblonema disease in Undaria. Bull. Tohoku Reg. Fish. Res. Lab. 37: 39–41.

  • Aruga Y, Toyoshima M, Yokohama Y (1990) Comparative photosynthetic studies of Ecklonia cava bladelets with and without zoosporangial sori. Jpn. J. Phycol. 38: 223–228.

    Google Scholar 

  • Aruga Y, Kurashima A, Yokohama Y (1997) Formation of zoosporangial sori and photosynthetic activity in Ecklonia cava Kjellman. J. Tokyo Univ. Fish. 83: 103–128.

    Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Ann Rev. Plant. Physiol. Plant Mol. Biol. 48: 51–66.

    Article  CAS  Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis, and indole-3-Butric acid-ß-oxidation. J. Plant Growth Regul. 20: 198–216.

    Article  CAS  Google Scholar 

  • Basu S, Sun H, Brian L, Quatroano RL, Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol. 130: 292–302.

    Article  PubMed  CAS  Google Scholar 

  • Bentley JA (1960) Plant hormones in marine phytoplankton, zooplankton and seawater. J. Mar. Biol. Ass, U.K. 39: 433–444.

    Google Scholar 

  • Bradley PM (1991) Plant hormones do have a role in controlling growth and development of algae. J. Phycol. 27: 317–321.

    Article  CAS  Google Scholar 

  • Buchholz C, Lüning K (1999) Isolated, distal blade discs of the brown alga Laminaria digitata form sorus, but not discs, near to the meristematic transition zone. J. Appl. Phycol. 16: 579–584.

    Article  Google Scholar 

  • Davidson FF (1950) The effects of auxins on the growth of marine algae. Am. J. Bot. 37: 502–510.

    Article  CAS  Google Scholar 

  • DeBoer JA, Guigli HJ, Israel TL (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J. Phycol. 14: 261–266.

    Article  CAS  Google Scholar 

  • Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145–151.

    Article  Google Scholar 

  • Fries L (1977) Axenic tissue cultures from the sporophytes of Laminaria digitata and Laminaria hyperborea (Phaeophyta). J. Phycol. 16: 475–477.

    Article  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant. Physiol. 26: 192–195.

    PubMed  CAS  Google Scholar 

  • Gortner WA, Kent MJ (1953) Indoleacetic acid oxidase and inhibitor in pineapple tissue. J. Biol. Chem. 213: 593–603.

    Google Scholar 

  • Gortner WA, Kent MJ (1958) The coenzyme requirement and enzyme inhibitors of pineapple indoleacetic acid oxidase. J. Biol. Chem. 233: 731–735.

    PubMed  CAS  Google Scholar 

  • Kain JM (1975) The biology of Laminaria hyperborea. VIII. Reproduction of the sporophyte. J. Mar. Biol. Ass. U.K. 55: 567–582.

    Article  Google Scholar 

  • Kain JM, Dawes CP (1987) Useful European seaweeds: past hopes present cultivation. Hydrobiologia 151/152: 173–181.

    Article  Google Scholar 

  • Ishikawa Y, Saga N (1989) The diseases of economically valuable seaweeds and pathology in Japan. In Miyachi S, Karube I, Ishida Y (eds) “Current Topics in Marine Biotechnology,” Fuji Technology Press Ltd, Tokyo, pp. 215–218.

    Google Scholar 

  • Kawashima S (1984) Kombu cultivation in Japan for human foodstuff. Jpn. J. Phycol. 32: 379–394.

    Google Scholar 

  • Kazama H, Katsumi M (1973) Auxin-gibberellin relationships in their effects on hypocotyls elongation of light-grown cucumber seedlings. Presponses of sections to auxin, gibberellin and sucrose. Plant Cell Physiol. 14: 449–458.

    CAS  Google Scholar 

  • Lawlor HJ, McComb JA, Borowitzka MA (1988) The development of filamentous and callus-like growth in axenic tissue cultures of Ecklonia radiata (Phaeophyta). In Stadler T, Mollion J, Verdis MC, Karamanos Y, Horvan H, Christiaen D (eds), “Algal Biotechnology,” Elsevier Applied Science, London, pp. 139– 150.

    Google Scholar 

  • Lüning K, Wagner A, Buchholz C (2000) Evidence for inhibitors of sporangium formation in Laminaria digitata (Phaeophyceae) during the season of rapid growth. J. Phycol. 36: 1129–1134.

    Article  Google Scholar 

  • Maruyama A, Maeda M, Shimizu U (1989) Microbial production of auxin indole-3-acetic acid in marine sediments. Mar. Ecol. Prog. Ser. 58: 69–75.

    Article  CAS  Google Scholar 

  • Markhan JW (1973) Observation on the ecology of Laminaria sinclairii on three northern Oregon beaches. J. Phycol. 9: 336–341.

    Google Scholar 

  • Mazur H, Homme E (1993) Presence of auxin indole-3-acetic acid in the northern Adriatic sea: phytohormones and mucilage. Mar. Ecol. Prog. Ser. 99: 163–168.

    Article  CAS  Google Scholar 

  • Mizuta H, Hayasaki J, Yamamoto H (1998) Relationship between nitrogen content and sorus formation in the brown alga Laminaria japonica cultivated in southern Hokkaido, Japan. Fish. Sci. 64: 909–913.

    CAS  Google Scholar 

  • Mowat JA (1964) Auxins and gibberellins in marine algae. 4th Int. Seaweed Symp. Pergamon Press, Oxford, pp. 349–356.

  • Nimura K, Mizuta H (2001) Differences in photosynthesis and nucleic acid content between sterile andfertile parts of the sporophyte of Laminaria japonica (Phaeophyceae). Algae 16: 151–155.

    Google Scholar 

  • Nimura K, Mizuta H (2002) Inducible effects of abscisic acid on sporophyte discs from Laminaria japonica Areschoug. J. Appl. Phycol. 14: 159–163.

    Article  CAS  Google Scholar 

  • Nimura K, Mizuta H, Yamamoto H (2002) Critical contents of Nitrogen and Phosphorus for sorus formation in four Laminaria species. Bot. Mar. 45: 184–188.

    Article  Google Scholar 

  • Normanly J (1997) Auxin metabolism. Physiol. Plant 100: 431–442.

    Article  CAS  Google Scholar 

  • Ohno M (1987) Wakame. In Tokuda H (ed), The Resources and Cultivation of Seaweeds. Midori-Shobo, pp. 133–144. (In Japanese)

  • Parke M (1948) Studies on British Laminariaceae. I. Growth in Laminaria saccharina (L.) Lamour. J. Mar. Biol. Ass. 27: 651–709.

    Article  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. Culture and collections of algae. Proc. U.S. – Japan Conf. Hakone, September 1966: 63–75.

  • Sakanishi Y, Yokohama Y, Aruga Y (1991) Photosynthetic capacity of various parts of the blade of Laminaria longissima Miyabe (Phaeophyta). Jpn. J. Phycol. 39: 239–247.

    Google Scholar 

  • Sondheimer E, Griffin DH (1959) Activation and inhibition of indoleacetic acid oxidase activity from peas. Science 131: 672

    Article  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novak O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 16: 31–39.

    Article  CAS  Google Scholar 

  • van Overbeek (1940) Auxin in marine algae. Plant Physiol. 15: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Yan ZM (1984) Studies on tissue culture of Laminaria japonica and Undaria pinnatifida. Hydrobiologia 116/117: 314–316.

    Article  Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilization: An end-of-century summary. J. Appl. Phycol. 11: 379–394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mizuta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, T., Nimura, K., Yasui, H. et al. Regulation of Sorus Formation by Auxin in Laminariales Sporophyte. J Appl Phycol 18, 95–101 (2006). https://doi.org/10.1007/s10811-005-9020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-005-9020-8

Key words

Navigation