Skip to main content
Log in

Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Eckol, a major phenolic compound isolated from brown seaweed significantly enhanced the bulb size and bioactive compounds in greenhouse-grown Eucomis autumnalis.

We investigated the effect of eckol and phloroglucinol (PG) (phenolic compounds) isolated from the brown seaweed, Ecklonia maxima (Osbeck) Papenfuss on the growth, phytochemical and auxin content in Eucomis autumnalis (Mill.) Chitt. The model plant is a popular medicinal species with increasing conservation concern. Eckol and PG were tested at 10−5, 10−6 and 10−7 M using soil drench applications. After 4 months, growth parameters, phytochemical and auxin content were recorded. When compared to the control, eckol (10−6 M) significantly improved bulb size, fresh weight and root production while the application of PG (10−6 M) significantly increased the bulb numbers. However, both compounds had no significant stimulatory effect on aerial organs. Bioactive phytochemicals such as p-hydroxybenzoic and ferulic acids were significantly increased in eckol (10−5 M) and PG (10−6 M) treatments, compared to the control. Aerial (1,357 pmol/g DW) and underground (1,474 pmol/g DW) parts of eckol-treated (10−5 M) plants yielded the highest concentration of indole-3-acetic acid. Overall, eckol and PG elicited a significant influence on the growth and physiological response in E. autumnalis. Considering the medicinal importance of E. autumnalis and the increasing strains on its wild populations, these compounds are potential tools to enhance their cultivation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

IAAsp:

Indole-3-acetyl-l-aspartic acid

IAC:

Immunoaffinity chromatography

MRM:

Multiple reaction monitoring

MS:

Murashige and Skoog (1962) medium

OxIAA:

2-Oxindole-3-acetic acid

PG:

Phloroglucinol

PGR:

Plant growth regulator

PPF:

Photosynthetic photon flux

SPE:

Solid-phase extraction

UHPLC:

Ultra high performance liquid chromatography–tandem mass spectrometry

UV:

Ultra-violet

References

  • Affolter JM, Pengelly A (2007) Conserving medicinal plant biodiversity. In: Wynn SG, Fougère BJ (eds) Veterinary herbal medicine. Mosby, Saint Louis, pp 257–263

    Chapter  Google Scholar 

  • Alain-Michel B (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Croker SJ, Gaskin P, Hedden P, MacMillan J, MacNeil KAG (1994) Quantitative analysis of gibberellins by isotope dilution mass spectrometry: a comparison of the use of calibration curves, an isotope dilution fit program and arithmetical correction of isotope ratios. Phytochem Anal 5:74–80

    Article  CAS  Google Scholar 

  • De Klerk G-J, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul 63:175–185

    Article  CAS  Google Scholar 

  • Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108:47–57

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid D, Thorpe T (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • Gruz J, Novák O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem 111:789–794

    Article  CAS  Google Scholar 

  • Gülçin İ (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  PubMed  Google Scholar 

  • Hussain MI, Reigosa MJ, Al-Dakheel AJ (2014) Biochemical, physiological and isotopic responses to natural product p-hydroxybenzoic acid in Cocksfoot (Dactylis glomerata L.). Plant Growth. doi:10.1007/s10725-014-9981-1

    Google Scholar 

  • Kannan RRR, Aderogba MA, Ndhlala AR, Stirk WA, Van Staden J (2013) Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int 54:1250–1254

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crops Prod 34:785–801

    Article  CAS  Google Scholar 

  • Lyson TA (2002) Advanced agricultural biotechnologies and sustainable agriculture. Trends Biotechnol 20:193–196

    Article  CAS  PubMed  Google Scholar 

  • Masondo NA, Finnie JF, Van Staden J (2014) Pharmacological potential and conservation prospect of the genus Eucomis (Hyacinthaceae) endemic to southern Africa. J Ethnopharmacol 151:44–53

    Article  PubMed  Google Scholar 

  • Moyo M, Amoo SO, Aremu AO, Gruz J, Šubrtová M, Doležal K, Van Staden J (2014) Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures. Plant Sci 227:157–164

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M (2014) Protective roles of exogenously applied gallic acid in Oryza sativa subjected to salt and osmotic stresses: effects on the total antioxidant capacity. Plant Growth Regul. doi:10.1007/s10725-014-9946-4

    Google Scholar 

  • Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176:5–16

    Article  CAS  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    Article  CAS  PubMed  Google Scholar 

  • Pěnčík A, Rolčík J, Novák O, Magnus V, Barták P, Buchtík R, Salopek-Sondi B, Strnad M (2009) Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80:651–655

    Article  PubMed  Google Scholar 

  • Raimondo D, Von Staden L, Foden W, Victor JE, Helme NA, Turner RC, Kamundi DA, Manyama PA (eds) (2009) Red list of South African plants, Strelitzia 25. South African National Biodiversity Institute (SANBI), Pretoria

  • Rengasamy KRR, Kulkarni MG, Stirk WA, Van Staden J (2014) Advances in algal drug research with emphasis on enzyme inhibitors. Biotechnol Adv 32:1364–1381. doi:10.1016/j.biotechadv.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy KRR, Kulkarni MG, Stirk WA, Van Staden J (2015) Eckol—a new plant growth stimulant from the brown seaweed Ecklonia maxima. J Appl Phycol 27:581–587. doi:10.1007/s10811-10014-10337-z

    Article  Google Scholar 

  • Rittenberg D, Foster GL (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:737–744

    CAS  Google Scholar 

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Teixeira da Silva J, Dobránszki J, Ross S (2013) Phloroglucinol in plant tissue culture. In Vitro Cell Dev Biol Plant 49:1–16

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Wilson PJ, Van Staden J (1990) Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting—a review. Ann Bot 66:479–490

    CAS  Google Scholar 

  • Wu HC, Du Toit ES, Reinhardt CF, Rimando AM, Van der Kooy F, Meyer JJM (2007) The phenolic, 3,4-dihydroxybenzoic acid, is an endogenous regulator of rooting in Protea cynaroides. Plant Growth Regul 52:207–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Claude Leon Foundation, University of KwaZulu-Natal and National Research Foundation, South Africa are thanked for financial support. This work was also financed by the Ministry of Education, Youth and Sport of the Czech Republic (the Program “Návrat” for Research, Development, and Innovations, No. LK21306), National Program for Sustainability (Grant LO1204) and the Czech Science Foundation (Grant 14-34792S). We thank Mrs Alison Young (UKZN Botanical Garden, Pietermaritzburg, South Africa) and her staff for their assistance in maintaining the greenhouse facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aremu, A.O., Masondo, N.A., Rengasamy, K.R.R. et al. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 241, 1313–1324 (2015). https://doi.org/10.1007/s00425-015-2256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2256-x

Keywords

Navigation