Skip to main content

Benefits of Algal Extracts in Sustainable Agriculture

  • Chapter
  • First Online:
Grand Challenges in Algae Biotechnology

Abstract

Algae possess inherent complex physiological photosynthetic mechanisms, which enable beneficial transformation of solar energy into other energy forms, for food and active metabolite synthesis. A number of active metabolites derived from algae, many of which demonstrate bioactive properties, have found profound, multifunctional applications in biofuels, nutraceuticals and functional foods, pharmaceuticals, and cosmetics industries. In spite of the evolving global interests and market demand of algal biomass and metabolites, studies and applications pertaining to sustainable agriculture challenges, such as soil nutrient deficiency, drought stress, soil toxicity, leaf discoloration and plant growth stunts, are limited. The generation and functional determination of novel bioactive compounds from algal biomass may offer innovative opportunities to address some of the aforementioned challenges. This chapter profiles and discusses the prospects of key algal metabolites in addressing plant growth challenges. Additionally, research findings from specific studies based on the use of algal metabolites and phytohormones as biostimulants, their influence in host animal physiology, and protective mechanisms against adventitious organisms or foreign pathogens, have been discussed. The chapter lays down progressive perspectives for optimal exploitation of algal metabolites and phytohormones in enhancing agricultural outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Agricultural importance of algae. Afr J Biotechnol 11(54):11648–11658

    Article  Google Scholar 

  • Abdel-Raouf N, Al-Enazi NM, Al-Homaidan AA et al (2015) Antibacterial β-amyrin isolated from Laurencia microcladia. Arab J Chem 8:32–37

    Article  CAS  Google Scholar 

  • Abomohra AE-F, Jin W, El-Sheekh M (2016) Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Convers Manag 108:23–29

    Article  CAS  Google Scholar 

  • Acea MJ, Diz N, Prieto-Fernández A (2001) Microbial populations in heated soils inoculated with cyanobacteria. Biol Fert Soils 33:118–125

    Article  Google Scholar 

  • Aina O, Quesenberry K, Gallo M (2012) Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis paraguariensis. Crop Sci 52(3):1076–1083

    CAS  Google Scholar 

  • Ali SMY, Ravikumar S, Beula JM (2013) Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Dis 3:196–201

    Article  PubMed Central  Google Scholar 

  • Al-Saif SS, Abdel-Raouf N, El-Wazanani HA et al (2014) Antibacterial substances from marine algae isolated from Jeddah coast of Red Sea, Saudi Arabia. Saudi J Biol Sci 21:57–64

    Article  CAS  PubMed  Google Scholar 

  • Altunok M, Ozkaya FC, Engin S et al (2015) In vitro antibacterial activity of sponge-associated fungi against bacterial aquaculture pathogens. Fresenius Environ Bull 24(6A):2158–2166

    CAS  Google Scholar 

  • Ammar N, Jabnoun-Khiareddine H, Mejdoub-Trabelsibi B et al (2017) Pythium leak control in potato using aqueous and organic extracts from the brown alga Sargassum vulgare (C. Agardh, 1820). Postharvest Biol Technol 130:81–93

    Article  Google Scholar 

  • Anderson TH, Gray TRG (1991) The influence of soil organic carbon on microbial growth and survival. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and the environment. Royal Society of Chemistry Cambridge, Cambridge, pp 253–266

    Google Scholar 

  • Ara J, Sultana V, Qasim R et al (2005) Biological activity of Spatoglossum asperum: a brown alga. Phytother Res 19:618–623

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2012) Ethylene: agricultural sources and applications. Springer Science & Business Media, New York

    Google Scholar 

  • Asha A, Rathi JM, Patric Raja D et al (2012) Biocidal activity of two marine green algal extracts against third instar nymph of Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopest 5:129–134

    Google Scholar 

  • Asharaja A, Sahayaraj K (2013) Screening of insecticidal activity of brown macroalgal extracts against Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J Biopest 6:193–203

    Google Scholar 

  • Ashour M, Wink M, Gershenzon J (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. Annu Plant Rev 2:258–303

    Google Scholar 

  • Aslam A, Thomas-Hall SR, Manzoor M et al (2018) Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: fatty acid profiling and biodiesel production. J Photochem Photobiol B 179:126–133

    Article  CAS  PubMed  Google Scholar 

  • Athukorala Y, Lee K-W, Kim S-K et al (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 98(9):1711–1716

    Article  CAS  PubMed  Google Scholar 

  • Avula SGC, Belovich JM, Xu Y (2017) Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC–MS with one-step esterification of free fatty acids and transesterification of glycerolipids. J Sep Sci 40(10):2214–2227

    Article  CAS  PubMed  Google Scholar 

  • Awasthi M, Upadhyay AK, Singh S et al (2018) Terpenoids as promising therapeutic molecules against Alzheimer’s disease: amyloid beta-and acetylcholinesterase-directed pharmacokinetic and molecular docking analyses. Mol Simul 44(1):1–11

    Article  CAS  Google Scholar 

  • Ayoola G, Coker H, Adesegun S et al (2008) Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res 7(3):1019–1024

    Google Scholar 

  • Baloch GN, Tariq S, Ehteshamul-Haque S (2013) Management of root diseases of eggplant and watermelon with the application of asafoetida and seaweeds. J Appl Bot Food Qual 86:138–142

    Google Scholar 

  • Bantoto V, Danilo DY (2013) The larvicidal activity of brown algae Padina minor (Yamada) and Dicyota linearis (Greville) against the dengue vector, Aedes aegypti (Linn) (Diptera: Culicidae). J Vector Borne Dis 50:68–70

    PubMed  Google Scholar 

  • Barrow C, Shahidi F (2008) Marine nutraceuticals and functional foods. CRC, London

    Google Scholar 

  • Basra SM, Lovatt CJ (2016) Exogenous applications of moringa leaf extract and cytokinins improve plant growth, yield, and fruit quality of cherry tomato. Hortic Technol 26(3):327–337

    CAS  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of Microalgal Culture. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25(2):207–210

    Article  CAS  PubMed  Google Scholar 

  • Benkendorff K, Davis AR, Rogers CN et al (2005) Free fatty acids and steroids in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44

    Article  CAS  Google Scholar 

  • Berri M, Slugocki C, Olivier M et al (2016) Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J Appl Phycol 28(5):2999–3008

    Article  Google Scholar 

  • Bilan M, Klochkova N, Ustyuzhanina N et al (2016) Polysaccharides of algae 68. Sulfated polysaccharides from the Kamchatka brown alga Laminaria bongardiana. Russ Chem Bull 65(11):2729–2736

    Article  CAS  Google Scholar 

  • Boeckaert C, Vlaeminck B, Dijkstra J et al (2008) Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J Dairy Sci 91(12):4714–4727

    Article  CAS  PubMed  Google Scholar 

  • Boyle RK, McAinsh M, Dodd IC (2016) Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation. Physiol Plant 158(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Braden KW, Blanton JR Jr, Montgomery JL et al (2007) Tasco supplementation: effects on carcass characteristics, sensory attributes, and retail display shelf-life. J Anim Sci 85:754–768

    Article  CAS  PubMed  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  • Burke J (2010) Plant hormone increases cotton yields in drought conditions. Agric Res 58(7):31

    Google Scholar 

  • Cameron HJ, Julian GR (1988) Utilization of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium. Plant Soil 109:123–124

    Article  CAS  Google Scholar 

  • Campos EVR, De Oliveira JL, Fraceto LF et al (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35(1):47–66

    Article  CAS  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146(1–2):60–78

    Article  PubMed  CAS  Google Scholar 

  • Castro NM, Valdez MC, Álvarez AM et al (2009) The kelp Macrocystis pyrifera as nutritional supplement for goats. Rev Cien 19(1):63–70

    Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  PubMed  Google Scholar 

  • Cetin H, Gokoglu M, Oz E (2010) Larvicidal activity of the extract of seaweed, Caulerpa scalpelliformis, against Culex pipiens. J Am Mosq Control Assoc 26:433–435

    Article  PubMed  Google Scholar 

  • Chang J-J, Thia C, Lin H-Y et al (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8

    Article  CAS  PubMed  Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweed and their uses, 3rd edn. Chapman & Hall, New York, pp 63–85

    Book  Google Scholar 

  • Chatterjee A, Singh S, Agrawal C et al (2017) Role of algae as a biofertilizer. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry: recent progress in biotechnology. Elsevier, Amsterdam, pp 189–200

    Chapter  Google Scholar 

  • Chatzissavvidis C, Therios I (2014) Role of algae in agriculture. In: Pomin VH (ed) Seaweeds: agricultural uses, biological and antioxidant agents. Nova Science, New York, pp 1–37

    Google Scholar 

  • Chaurasia AK, Parasnis A, Apte SK (2008) An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods 73:133–141

    Article  CAS  PubMed  Google Scholar 

  • Cherng J-Y, Shih M-F (2006) Improving glycogenesis in Streptozocin (STZ) diabetic mice after administration of green algae Chlorella. Life Sci 78(11):1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Chye JTT, Jun LY, Yon LS et al (2018) Biofuel production from algal biomass. In: Konur O (ed) Bioenergy and biofuels, 1st edn. CRC Press, Taylor and Francis, Boca Raton, pp 87–117

    Chapter  Google Scholar 

  • Ciferri O, Tiboni O (1985) The biochemistry and industrial potential of spirulina. Ann Rev Microbiol 39:503–526

    Article  CAS  Google Scholar 

  • Cocchietto M, Skert N, Nimis P et al (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89(4):137–146

    Article  CAS  PubMed  Google Scholar 

  • Commeiras L, Bourdron J, Douillard S et al (2006) Total synthesis of terpenoids isolated from caulerpale algae and their inhibition of tubulin assembly. Synthesis 2006(01):166–181

    Article  CAS  Google Scholar 

  • Cosgrove E (2017) Report: algae market to reach $45bn by 2023. https://agfundernews.com/report-algae-market-could-to-reach-45b-by-2023.html. Accessed 11 Aug 2018

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Cseke LJ, Kirakosyan A, Kaufman PB et al (2016) Natural products from plants. CRC, London

    Book  Google Scholar 

  • Das SC, Mandal M, Mandal LN et al (1991) Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils. Plant Soil 138:75–84

    Article  CAS  Google Scholar 

  • Dautermann O, Lohr M (2017) A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant J 92(5):879–891

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Duke SO (2014) Natural compounds as next generation herbicides. Plant Physiol 114(239061):1090–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Morais MG, Vaz BS, de Morais EG et al (2015) Biologically active metabolites synthesized by microalgae. BioMed Res Int 2015:835761

    Google Scholar 

  • Del Campo JA, Moreno J, Rodríguez H et al (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  PubMed  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Dhargalkar VK, Pereira N (2005) Seaweed: promising plant of millennium. Sci Cult 71(3-4):60–66

    Google Scholar 

  • Dmytryk A, Chojnacka K (2018) Algae as fertilizers, biostimulants, and regulators of plant growth. Algae biomass, characteristics and applications. Springer, Cham, pp 115–122

    Google Scholar 

  • Domozych DS, Sørensen I, Popper ZA et al (2014) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 114(236257):105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definitions, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Eder M, Lütz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243(1–4):25–38

    Article  CAS  PubMed  Google Scholar 

  • Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Einstein-Curtin A (2018) A more robust algae farming industry in the US will provide us with new and sustainable agricultural products. https://www.feednavigator.com/Article/2018/04/19/A-more-robust-algae-farming-industry-in-the-US-will-provide-us-with-new-and-sustainable-agricultural-products?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright. Accessed 11 Aug 2018

  • Ellis JT, Hengge NN, Sims RC et al (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  CAS  PubMed  Google Scholar 

  • Esashi Y (2017) Ethylene and seed germination. The plant hormone ethylene. CRC, London, pp 133–157

    Google Scholar 

  • Esquivel-Hernández DA, Ibarra-Garza IP, Rodríguez-Rodríguez J et al (2017) Green extraction technologies for high-value metabolites from algae: a review. Biofuels Bioprod Biorefin 11(1):215–231

    Article  CAS  Google Scholar 

  • Esserti S, Smaili A, Rifai LA et al (2017) Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J Appl Phycol 29(2):1081–1093

    Article  CAS  Google Scholar 

  • Estime B, Ren D, Sureshkumar R (2017) Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition. Sci Rep 7:40725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc (cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fert Soils 23:246–252

    Article  Google Scholar 

  • Falkowska M, Pietryczuk A, Piotrowska A et al (2011) The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Pol J Environ Stud 20:53–59

    Google Scholar 

  • Fenical W, Paul VJ (1984) Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. In: 11th International seaweed symposium. Springer, Dordrecht

    Chapter  Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: composition of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Foo SC, Yusoff FM, Ismail M et al (2017) Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol 241:175–183

    Article  CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S et al (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Freile-Pelegrín Y, Robledo D (2014) Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. Wiley, Chichester

    Google Scholar 

  • Freile-Pelegrín Y, Robledo D, Chan-Bacab M et al (2008) Antileishmanial properties of tropical marine algae extracts. Fitoterapia 79(5):374–377

    Article  PubMed  Google Scholar 

  • Galal HRM, Salem WM, Naser F et al (2011) Biological control of some pathogenic fungi using marine algae extracts. Res J Microbiol 6:645–657

    Article  Google Scholar 

  • Gao Z, Meng C, Gao H et al (2013) Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin a3 (GA3). Indian J Biochem Biophys 50:548–553

    CAS  PubMed  Google Scholar 

  • Gattuso J-P, Jaubert J (1990) Effect of light on oxygen and carbon dioxide fluxes and on metabolic quotients measured in situ in a zooxanthellate coral. Limnol Oceanogr 35:1796–1804

    Article  Google Scholar 

  • Gille A, Trautmann A, Posten C et al (2016) Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. Int J Food Sci Nutr 67(5):507–513

    Article  CAS  Google Scholar 

  • Ginzberg A, Cohen M, Sod-Moriah UA et al (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12:325–330

    Article  Google Scholar 

  • Glazer I, Apelbaum A, Orion D (1985) Effect of inhibitors and stimulators of ethylene production on gall development in Meloidogyne javanica-infected tomato roots. J Nematol 17:145–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath V, Saravanan S, Al-Maleki A et al (2018) A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharmacother 107:96–108

    Article  CAS  PubMed  Google Scholar 

  • Gouveia L, Batista AP, Sousa I (2008) Microalgae in novel food products. In: Papadoupoulos K (ed) Food chemistry research developments. Nova Science, New York, pp 75–112

    Google Scholar 

  • Gouveia V, Seca AM, Barreto MC et al (2013) Di-and sesquiterpenoids from Cystoseira genus: structure, intra-molecular transformations and biological activity. Mini Rev Med Chem 13(8):1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Guilherme MR, Aouada FA, Fajardo AR et al (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  • Gutiérrez R, Núñez R, Quintana L et al (2017) Optimization of the extraction process of phenolic compounds from the brown algae Sargassum fluitans Børgesen (Børgesen). Biotecnol Apl 34(3):3301–3304

    Google Scholar 

  • Hamed SM, Abd El-Rhman AA, Abdel-Raouf N et al (2018) Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Seuf Univ J Appl Sci 7:104–110

    Google Scholar 

  • Han T, Zhao Z, Wang Y (2016) The effect of ryegrass and fertilizer on the petroleum contaminated soil remediation. Feb Fresenius Environ Bull 25(6):2243–2250

    CAS  Google Scholar 

  • Han X, Zeng H, Bartocci P et al (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25

    Article  CAS  Google Scholar 

  • Harland AD, Fixter LM, Davies PS et al (1991) Distribution of lipids between the zooxanthellae and animal compartment in the symbiotic sea anemone Anemonia viridis: wax esters, triglycerides and fatty acids. Mar Biol 110:13–19

    Article  CAS  Google Scholar 

  • He ML, Wang Y, You JS et al (2009) Effect of a seaweed extract on fatty acid accumulation and glycerol-3-phosphate dehydrogenase activity in 3T3-L1 adipocytes. Lipids 44:125–132

    Article  CAS  PubMed  Google Scholar 

  • Henríquez V, Escobar C, Galarza J et al (2016) Carotenoids in microalgae. Carotenoids in nature. Springer, Cham, pp 219–237

    Book  Google Scholar 

  • Hoang TH, Qin JG, Stone DA et al (2016) Colour changes of greenlip abalone (Haliotis laevigata Donovan) fed fresh macroalgae and dried algal supplement. Aquaculture 456:16–23

    Article  CAS  Google Scholar 

  • Huang W, Lin Y, He M et al (2018) Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. J Agric Food Chem 66(4):891–897

    Article  CAS  PubMed  Google Scholar 

  • Ibraheem BMI, Hamed SM, Abd Elrhman AA et al (2017) Antimicrobial activities of some brown macroalgae against some soil borne plant pathogens and in vivo management of Solanum melongena root diseases. Aust J Basic Appl Sci 11:157–168

    CAS  Google Scholar 

  • Jiao G, Yu G, Zhang J et al (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9(2):196–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL, Jones MB, Cobb BA (2014) Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology 25(4):368–375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston M, Yellowlees D, Gilmour I (1995) Carbon isotopic analysis of the free fatty acids in a tridacnid–algal symbiosis: interpretation and implications for the symbiotic association. Proc R Soc Lond B 260:293–297

    Article  CAS  Google Scholar 

  • Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. Algal chemical ecology. Springer, Cham, pp 57–89

    Google Scholar 

  • Ju C, Van de Poel B, Cooper ED et al (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat Plants 1(1):14004

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Sung H, Young S (2017) Immunostimulatory and anti-metastatic activity of polysaccharides isolated from byproducts of the corn starch industry. Carbohydr Polym 181:911–917

    Google Scholar 

  • Kempinski C, Jiang Z, Bell S et al (2015) Metabolic engineering of higher plants and algae for isoprenoid production. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Springer, Cham, pp 161–199

    Chapter  Google Scholar 

  • Keshari B, Pradhan B, Deo B (2016) Effects of cytokinins and auxins on micropropagation of Musa spp. cv. Yangambi. IJOER 2(5):156–158

    Google Scholar 

  • Kevan PG, Shipp L (2017) Biological control as biotechnological amelioration and ecosystem intensification in managed ecosystems. In: Reference module in life sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-809633-8.09246-3. ISBN 978-0-12-809633-8

    Chapter  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S et al (2009) Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regul 28:386–399

    Article  CAS  Google Scholar 

  • Khasin M, Cahoon RE, Alvarez S et al (2017) Synthesis, secretion, and perception of abscisic acid regulates stress responses in Chlorella sorokiniana. bioRxiv 180547

    Google Scholar 

  • Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18(2):2328–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67(7):696–701

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ (2002) Tribute to Folke Skoog: recent advances in our understanding of cytokinin biology. J Plant Growth Regul 21(1):1

    Article  CAS  PubMed  Google Scholar 

  • Kishi M, Kawai M, Toda T (2015) Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Res 11:428–434

    Article  Google Scholar 

  • Kleiner KT, Harper KT (1977) Soil properties in relation to cryptogamic ground cover in Canyonlands National Park. J Range Manag 30:202–205

    Article  CAS  Google Scholar 

  • Kobayashi Y, Ando H, Hanaoka M et al (2016) Abscisic acid participates in the control of cell cycle initiation through heme homeostasis in the unicellular red alga Cyanidioschyzon merolae. Plant Cell Physiol 57(5):953–960

    Article  CAS  PubMed  Google Scholar 

  • Kombiah P, Sahayaraj K (2012) Repellent activity of Caulerpa scalpelliformis extracts and its formulations against Spodoptera litura and Dysdercus cingulatus (fab.). J Biopest 5:145–150

    Google Scholar 

  • Kumar M, Tomar RS, Lade H et al (2016) Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32(7):120

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T (2017) Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot 70(7):811

    Article  CAS  Google Scholar 

  • Lakeh AAB, Ahmadi MR, Safi S (2010) Growth performance, mortality and carotenoid pigmentation of fry offspring as affected by dietary supplementation of astaxanthin to female rainbow trout (Oncorhynchus mykiss) broodstock. J Appl Ichthyol 26:35–39

    Article  CAS  Google Scholar 

  • Lange W (1976) Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol 22:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Jeon YJ (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wu Y, Xie Q et al (2017) 5-abscisic acid. In: Li J, Li C, Smith SM (eds) Hormone metabolism and signaling in plants. Academic, San Diego, pp 161–202

    Chapter  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Lin J-T, Liu S-C, Hu C-C et al (2016) Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem 190:520–528

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun Y, He S et al (2013) Synthesis and characterization of gibberellin–chitosan conjugate for controlled-release applications. Int J Biol Macromol 57:213–217

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiu W, Song Y (2016) Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Article  Google Scholar 

  • Lohr M (2017) Genomic insights into the biosynthesis of photoprotective pigments in Porphyra umbilicalis: carotenoids and mycosporine-like amino acids. Phycologia 56(4):121

    Google Scholar 

  • Ma J (2002) Differential sensitivity to 30 herbicides among populations of two green algae Scenedesmus obliquus and Chlorella pyrenoidosa. Bull Environ Contam Toxicol 68(2):275–281

    CAS  PubMed  Google Scholar 

  • Ma J, Xu L, Wang S (2002) A quick, simple, and accurate method of screening herbicide activity using green algae cell suspension cultures. Weed Sci 50(5):555–559

    Article  CAS  Google Scholar 

  • Manzo E, Ciavatta ML, Bakkas S et al (2009) Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem Lett 2:211–215

    Article  CAS  Google Scholar 

  • Mao J-L, Miao Z-Q, Wang Z et al (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12(1):e1005760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha NM et al (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80

    Article  CAS  Google Scholar 

  • Mercier L, Lafitte C, Borderies G et al (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol 149:43–51

    Article  CAS  PubMed  Google Scholar 

  • Michalak I, Chojnacka K (2015) Production of seaweed extracts by biological and chemical methods. In: Kim S-K, Chojnacka K (eds) Marine algae extracts: processes, products, applications. Wiley, Weinheim

    Google Scholar 

  • Mihranyan A (2011) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119(4):2449–2460

    Article  CAS  Google Scholar 

  • Montgomery JL, Allen VG, Pond KR et al (2001) Tasco-Forage: IV. Influence of a seaweed extract applied to tall fescue pastures on sensory characteristics, shelf-life, and vitamin E status in feedlot-finished steers. J Anim Sci 79:884–894

    Article  CAS  PubMed  Google Scholar 

  • Mooney PA, van Staden J (1986) Algae and cytokinins. J Plant Physiol 123(1):1–21

    Article  CAS  Google Scholar 

  • Moore BG, Tischer RG (1964) Extracellular polysaccharides of algae: effects on life-support systems. Science 145(3632):586

    Article  CAS  PubMed  Google Scholar 

  • Moubayed NMS, Al Houri HJ, AlKhulaifi MM et al (2017) Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci 24:162–169

    Article  CAS  PubMed  Google Scholar 

  • Mowat JA (1965) A survey of results on the occurrence of auxins and gibberellins in algae. Bot Mar 8(1):149–155

    Article  CAS  Google Scholar 

  • Mulders KJ, Weesepoel Y, Bodenes P et al (2015) Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J Appl Phycol 27(1):125–140

    Article  CAS  Google Scholar 

  • Munira S, Farenhorst A, Sapkota K et al (2018) Auxin herbicides and pesticide mixtures in groundwater of a Canadian Prairie Province. J Environ Qual 47(6):1462–1467

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski P, Porter J et al (1984) Fate of photosynthetically-fixed carbon in light and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202

    Article  CAS  Google Scholar 

  • Napier R (2017) Adding to the agricultural toolkit: next generation auxins and anti-auxins. Impact 2017(7):69–71

    Article  Google Scholar 

  • Ngala BM, Valdes Y, dos Santos G et al (2016) Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. J Appl Phycol 28:2073–2082

    Article  CAS  Google Scholar 

  • Ngo TC, Dao DQ, Nguyen MT et al (2017) A DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus. RSC Adv 7(63):39686–39698

    Article  CAS  Google Scholar 

  • Nimura K, Mizuta H (2002) Inducible effects of abscisic acid on sporophyte discs from Laminaria japonica Areschoug (Laminariales, Phaeophyceae). J Appl Phycol 14(3):159–163

    Article  CAS  Google Scholar 

  • Ohtaka K, Hori K, Kanno Y et al (2017) Primitive auxin response without TIR1 and aux/IAA in the charophyte alga Klebsormidium nitens. Plant Physiol 174(3):1621–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ördög V, Stirk WA, Van Staden J et al (2004) Endogenous cytokinins in three genera of microalgae from the Chlorophyta 1. J Phycol 40(1):88–95

    Article  CAS  Google Scholar 

  • Ozioko FU, Chiejina NV, Ogbonna JC (2015) Effect of some phytohormones on growth characteristics of Chlorella sorokiniana IAM-C212 under photoautotrophic conditions. Afr J Biotechnol 14(30):2367–2376

    Article  CAS  Google Scholar 

  • Pardee KI, Ellis P, Bouthillier M et al (2004) Plant virus inhibitors from marine algae. Can J Bot 82:304–309

    Article  Google Scholar 

  • Patel HR, Patel M (2018) Role of auxins on rooting of different types of cuttings in Fig. Int J Curr Microbiol App Sci 7(3):1317–1322

    Article  CAS  Google Scholar 

  • Pathak J, Rajneesh, Maurya PK et al (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6:7

    Google Scholar 

  • Paula JCD, Vallim MA, Teixeira VL (2011) What are and where are the bioactive terpenoids metabolites from Dictyotaceae (Phaeophyceae). Rev Bras Farmacogn 21(2):216–228

    Article  CAS  Google Scholar 

  • Paulert R, Ebbinghaus D, Urlass C et al (2010) Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants. Plant Pathol 59:634–642

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21(12):1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Peng K, Li J, Jiao K et al (2018) The bioeconomy of microalgal biofuels. In: Jacob-lopes E, Queiroz Zepka L, Queiroz M (eds) Energy from microalgae. Green energy and technology. Springer, Cham, pp 157–169

    Chapter  Google Scholar 

  • Pilar GJ, Olegario BR, Rafael RR (2016) Occurrence of jasmonates during cystocarp development in the red alga Grateloupia imbricata. J Phycol 52(6):1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Kotowska U et al (2018) Growth, metabolite profile, oxidative status, and Phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. J Plant Growth Regul 37:1–16

    Article  CAS  Google Scholar 

  • Prabhavathi V, Rajam MV (2007) Mannitol-accumulating transgenic eggplants exhibit enhanced resistance to fungal wilts. Plant Sci 173:50–54

    Article  CAS  Google Scholar 

  • Quareshy M, Prusinska J, Li J et al (2017) A cheminformatics review of auxins as herbicides. J Exp Bot 69(2):265–275

    Article  CAS  Google Scholar 

  • Ramya SS, Vijayanand N, Rathinavel S (2015) Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. Int J Recycl Org Waste Agric 4(3):167–173

    Article  Google Scholar 

  • Rao DLN, Burns RG (1990) The effect of surface growth on blue-green algae and bryophytes on some microbiological, biochemical and physical soil properties. Biol Fert Soils 9:239–244

    Article  CAS  Google Scholar 

  • Rasoulpour R, Afsharifar A, Izadpanah K (2018) Antiviral activity of prickly pear (Opuntia ficus-indica (L.) Miller) extract: Opuntin B, a second antiviral protein. Crop Prot 112:1–9

    Article  CAS  Google Scholar 

  • Richardson JW, Johnson MD, Zhang X et al (2014) A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res 4:96–104

    Article  Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka A, Borowitzka L (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 83–121

    Google Scholar 

  • Rodrigues DB, Flores ÉM, Barin JS et al (2014) Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res Int 65:144–148

    Article  CAS  Google Scholar 

  • Rodriguez-Garcia A, Hosseini S, Martinez-Chapa SO et al (2017) Multi-target activities of selected alkaloids and terpenoids. Mini Rev Org Chem 14(4):272–279

    Article  CAS  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fert Soils 18:209–215

    Article  Google Scholar 

  • Roychoudhury P, Kaushik BD, Krishnamurthy GSR et al (1979) Effect of blue-green algae and Azolla application on the aggregation status of the soil. Curr Sci 48:454–455

    Google Scholar 

  • Ruggiero B, Koiwa H, Manabe Y et al (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol 136(2):3134–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu B-G, Kim W, Heo S-W et al (2015) Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions. Bioresour Technol 191:488–495

    Article  CAS  PubMed  Google Scholar 

  • Saha KC, Mandal LN (1979) Effect of algal growth on the availability of phosphorus, iron and manganese in rice soil. Plant Soil 52:139–146

    Article  CAS  Google Scholar 

  • Sahayaraj K, Kalidas S (2011) Evaluation of nymphicidal and ovicidal effect of seaweed, Padinapavonica (Linn.) (Pheophyceae) on cotton pest, Dysdercuscingulatus (Fab.). Indian J Geo Mar Sci 40:125–129

    CAS  Google Scholar 

  • Saifullah M, Stephen MM, Khattak B (2007) Isolation of Trichoderma harzianum and in vitro screening for its effectiveness against root-knot nematodes (Meloidogyne sp.) from Swat, Pakistan. Pak J Nematol 25:313–322

    Google Scholar 

  • Saito M, Endo K, Kobayashi K et al (2018) High myristic acid content in the cyanobacterium Cyanothece sp. PCC 8801 results from substrate specificity of lysophosphatidic acid acyltransferase. Biochim Biophys Acta Mol Cell Biol Lipids 1863(9):939–947

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Mori K, Matsuo Y et al (2017) Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed Sci 67(3):320–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha P, Babu S, Rangasamy R (2011) Potential of green alga Chaetomorpha litorea (Harvey) for biogas production. Int J Curr Sci 1:24–29

    Google Scholar 

  • Sarwar M (2015) The killer chemicals for control of agriculture insect pests: the botanical insecticides. Int J Chem Biomol Sci 1(3):123–128

    CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A et al (2017) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722

    Article  CAS  PubMed  Google Scholar 

  • Schoenwaelder ME (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41(2):125–139

    Article  Google Scholar 

  • Seethapathy P, Jayaraman R, Palani N et al (2016) Botanicals in eco-friendly post harvest disease management. Innov Farm 1(3):67–71

    Google Scholar 

  • Sharma R, Khokhar MK, Jat RL et al (2012) Role of algae and cyanobacteria in sustainable agriculture system. Wudpecker J Agric Res 1(9):381–388

    Google Scholar 

  • Sharma HS, Fleming C, Selby C et al (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfol Theorie Praxis 21:2337

    Google Scholar 

  • Shimonaga T, Fujiwara S, Kaneko M et al (2007) Variation in storage α-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol 9(2):192

    Article  CAS  Google Scholar 

  • Silverstone AL, Sun T-P (2000) Gibberellins and the green revolution. Trends Plant Sci 5(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Singh DT, Nirmala K, Modi DR et al (1987) Genetic transfer of herbicide resistance gene(s) from Gloeocapsa spp. to Nostoc muscorum. Mol Gen Genet 208:436–438. https://doi.org/10.1007/BF00328135

    Article  CAS  Google Scholar 

  • Singh R, Parihar P, Singh M et al (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515

    Google Scholar 

  • Skjanes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2):172–215

    Article  CAS  PubMed  Google Scholar 

  • Skriptsova A (2015) Fucoidans of brown algae: biosynthesis, localization, and physiological role in thallus. Russ J Mar Biol 41(3):145–156

    Article  CAS  Google Scholar 

  • Solangi SK, Qureshi ST, Solangi MK et al (2018) Estimation of auxins and cytokinins requirements in sugarcane soma clones for effective in vitro regeneration procedure. Int J Plant Physiol Biochem 10(2):10–18

    CAS  Google Scholar 

  • Solovchenko A, Lukyanov A, Solovchenko O et al (2014) Interactive effects of salinity, high light, and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. Eur J Lipid Sci Technol 116(5):635–644

    Article  CAS  Google Scholar 

  • Souza JM, Yokoya NS (2016) Effects of cytokinins on physiological and biochemical responses of the agar-producing red alga Gracilaria caudata (Gracilariales, Rhodophyta). J Appl Phycol 28(6):3491–3499

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Stadnik MJ, De Freitas MB (2014) Algal polysaccharides as source of plant resistance inducers. Trop Plant Pathol 39:111–118

    Article  Google Scholar 

  • Stengel DB, Connan S (2015) Natural products from marine algae. Springer, New York

    Book  Google Scholar 

  • Stick RV (2001) Carbohydrates: the sweet molecules of life. Elsevier, Amsterdam

    Google Scholar 

  • Stirk W, Novák O, Strnad M et al (2003) Cytokinins in macroalgae. Plant Growth Regul 41(1):13–24

    Article  CAS  Google Scholar 

  • Stirk W, Bálint P, Tarkowská D et al (2013) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    Article  CAS  PubMed  Google Scholar 

  • Subhashini D, Kaushik BD (1981) Amelioration of sodic soils with blue-green algae. Aust J Soil Res 19:361–366

    Article  Google Scholar 

  • Sultana V, Baloch GN, Ara J et al (2011) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J Appl Bot Food Qual 84:162–168

    CAS  Google Scholar 

  • Sushchik NN, Kalacheva GS, Gladyshev MI (2001) Secretion of free fatty acids by prokaryotic and eukaryotic algae at optimal, supraoptimal, and suboptimal growth temperatures. Microbiology 70(5):542–547

    Article  CAS  Google Scholar 

  • Svircev Z (2005) Mikroalge i cijanobakterije u biotehnologiji. Prirodnomatematicˇki fakultet, Novi Sad

    Google Scholar 

  • Takahashi N, Phinney BO, MacMillan J (2012) Gibberellins. Springer Science & Business Media, New York

    Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9(6):1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarakhovskaya E, Maslov YI, Shishova M (2007) Phytohormones in algae. Russ J Plant Physiol 54(2):163–170

    Article  CAS  Google Scholar 

  • Tena N, Lobo-Prieto A, Aparicio R et al (2018) Storage and preservation of fats and oils. Reference module in food science. Elsevier, Amsterdam

    Google Scholar 

  • Trentacoste EM, Martinez AM, Zenk T (2015) The place of algae in agriculture: policies for algal biomass production. Photosynth Res 123(3):305–315

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-H, Chen Y-C, Chen L-D et al (2008) A traditional Chinese herbal antilithic formula, Wulingsan, effectively prevents the renal deposition of calcium oxalate crystal in ethylene glycol-fed rats. Urol Res 36(1):17

    Article  PubMed  Google Scholar 

  • Tuchy L, Chowańska J, Chojnacka K (2013) Seaweed extracts as biostimulants of plant growth: review. Chemik 67(7):636–641

    Google Scholar 

  • Tvrzicka E, Kremmyda L-S, Stankova B et al (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease-a review. Part 1: classification, dietary sources and biological functions. Biomed Pap 155(2):117–30

    Article  CAS  Google Scholar 

  • Uji T, Matsuda R, Takechi K et al (2016) Ethylene regulation of sexual reproduction in the marine red alga Pyropia yezoensis (Rhodophyta). J Appl Phycol 28(6):3501–3509

    Article  CAS  Google Scholar 

  • Valerio M, Lovelli S, Sofo A et al (2017) Root and leaf abscisic acid concentration impact on gas exchange in tomato (Lycopersicon esculentum Mill) plants subjected to partial root-zone drying. Ital J Agron 12(1):25–32

    Google Scholar 

  • Vallim MA, De Paula JC, Pereira RC et al (2005) The diterpenes from Dictyotacean marine brown algae in the tropical Atlantic American region. Biochem Syst Ecol 33(1):1–16

    Article  CAS  Google Scholar 

  • Vaskovsky V, Smirnova G, Shashkov A et al (2015) Polysaccharides of algae 67. Carrageenan from Pacific red alga Turnerella mertensiana (Gigartinales, Rhodophyta). Russ Chem Bull 64(5):1163–1167

    Article  CAS  Google Scholar 

  • VegaAlga—Result In Brief (2018) Algae-based fertiliser turns vegetable farming green. https://cordis.europa.eu/result/rcn/227612_en.html. Accessed 11 Aug 2018

  • Veillette M, Giroir-Fendler A, Faucheux N et al (2017) Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: from model acid oil to microalgae lipids. Chem Eng J 308:101–109

    Article  CAS  Google Scholar 

  • Venkataraman GS (1978) Indian experience with algal ponds. In: Conference on the State of the Art of Bioconversion of Organic Residues for Rural Communities. Guatemala City (Guatemala), 13 November 1978

    Google Scholar 

  • Vonshak A (1986) Laboratory techniques for the culturing of microalgae. In: Richmond A (ed) Handbook for microalgal mass culture. CRC, Boca Raton, pp 117–145

    Google Scholar 

  • Wang S, Zhong FD, Zhang YJ et al (2004) Molecular characterization of a new lectin from the marine algae Ulva pertusa. Acta Biochim Biophys Sin 36:111–117

    Article  PubMed  Google Scholar 

  • Wang L, Yao Y, Sang W et al (2015) Structural features and immunostimulating effects of three acidic polysaccharides isolated from Panax quinquefolius. Int J Biol Macromol 80:77–86

    Article  CAS  PubMed  Google Scholar 

  • Whitehead LF, Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206(18):3149–3157

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer, Cham, pp 233–255

    Google Scholar 

  • Win TT, Barone GD, Secundo F et al (2018) Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol 14(4):203–211

    Article  Google Scholar 

  • Woodson WR (2018) Pollination signals and flower senescence. Annu Plant Rev 6:294–311

    Article  Google Scholar 

  • Wu Y, Jenkins T, Blunden G et al (1998) Suppression of fecundity of the root-knot nematode, Meloidogyne javanica, in monoxenic cultures of Arabidopsis thaliana treated with an alkaline extract of Ascophyllum nodosum. J Appl Phycol 10:91–94

    Article  Google Scholar 

  • Yang Z, Liu J, Tischer SV et al (2016) Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proc Natl Acad Sci 113(24):6791–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeong TK, Jiao K, Zeng X et al (2018) Microalgae for biobutanol production – technology evaluation and value proposition. Algal Res 31:367–376

    Article  Google Scholar 

  • Yokoya NS, Stirk WA, Van Staden J et al (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46(6):1198–1205

    Article  CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M et al (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26(3):451–457

    Article  CAS  Google Scholar 

  • Zbakh H, Chiheb H, Bouziane H et al (2012) Antibacterial activity of benthic marine algae extracts from the Mediterranean coast of Morocco. J Microbiol Biotechnol Food Sci 2(1):219

    Google Scholar 

  • Zhang H, Huang D, Cramer WA (1999) Stoichiometrically bound β-carotene in the Cytochromeb6f complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem 274(3):1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Tanabe K, Tamura F et al (2007) Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul 52(2):161

    Article  CAS  Google Scholar 

  • Zhao L, Feng C, Wu K et al (2017) Advances and prospects in biogenic substances against plant virus: a review. Pest Biochem Physiol 135:15–26

    Article  CAS  Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I et al (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41(4):819–826

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, S., Jeevanandam, J., Danquah, M.K. (2019). Benefits of Algal Extracts in Sustainable Agriculture. In: Hallmann, A., Rampelotto, P. (eds) Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-25233-5_14

Download citation

Publish with us

Policies and ethics