Skip to main content
Log in

The biosynthesis of auxin: how many paths truly lead to IAA?

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The plant auxin indole-3-acetic acid (IAA) plays critical roles in plant growth and development. There are two main strategies proposed for plant synthesis of IAA: the Trp-dependent (TD) and the Trp-independent (TI) pathways. Four TD pathways, namely the indole-3-acetamide pathway, the indole-3-pyruvic acid pathway, the tryptamine pathway and the indole-3-acetaldoxime pathway, have been postulated, identified and extensively studied. On the other hand, neither genes nor mutants involved in the TI pathway have been identified to date. Interestingly, some bacteria have auxin synthesis pathways that are similar to those in plants, indicating conserved biosynthetic mechanisms. Over the past few years, genetic, biochemical and molecular studies have greatly advanced our understanding of auxin biosynthesis. This review both summarizes recent advances in genetic and molecular knowledge and addresses the unsolved questions regarding auxin biosynthesis pathways in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alarcon MV, Lloret PG, Salguero J (2014) Synergistic action of auxin and ethylene on root elongation inhibition is caused by a reduction of epidermal cell length. Plant Signal Behav 9:e28361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Phys 48:49–64

    Google Scholar 

  • Bartel B, Fink GR (1994) Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91(14):6649–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartling D, Seedorf M, Mithofer A, Weiler EW (1992) Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Eur J Biochem 205(1):417–424

    Article  CAS  PubMed  Google Scholar 

  • Brumos J, Alonso JM, Stepanova AN (2014) Genetic aspects of auxin biosynthesis and its regulation. Physiol Plant 151(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Cai XT, Xu P, Zhao PX, Liu R, Yu LH, Xiang CB (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:5833

    Article  CAS  PubMed  Google Scholar 

  • Casanova E, Trillas MI, Moysset L, Vainstein A (2005) Influence of rol genes in floriculture. Biotechnol Adv 23(1):3–39

    Article  CAS  PubMed  Google Scholar 

  • Chandler JW (2009) Auxin as compere in plant hormone crosstalk. Planta 231(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M (2012) Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS ONE 7(5):e36210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19(8):2430–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YI, Noh EW, Kim HJ, Park WJ (2014) Differential regulation of cytokinin oxidase genes and cytokinin-induced auxin biosynthesis by cellular cytokinin level in transgenic poplars. Plant Cell Rep 33(10):1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Cooney TP, Nonhebel HM (1991) Biosynthesis of indole-3-acetic acid in tomato shoots: measurement, mass-spectral identification and incorporation of (−2)H from (−2)H2O into indole-3-acetic acid, d- and l-tryptophan, indole-3-pyruvate and tryptamine. Planta 184(3):368–376

    Article  CAS  PubMed  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243(4):463–472

    CAS  PubMed  Google Scholar 

  • Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y (2013) The arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet 9(9):e1003759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, DuBois J, Ballou D, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288(3):1448–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca V, Fernandez JA, Campbell D, Kurz WG (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 86(2):447–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14(5):603–611

    Article  CAS  PubMed  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Ehlert B, Schottler MA, Tischendorf G, Ludwig-Muller J, Bock R (2008) The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. J Exp Bot 59(13):3635–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eklund DM, Staldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundstrom JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22(2):349–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enders TA, Strader LC (2015) Auxin activity: past, present, and future. Am J Bot 102(2):180–196

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Cohen J, Slovin J (2002) The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. Plant Growth Regul 38:15–20

    Article  CAS  Google Scholar 

  • Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic l-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108(50):20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudin V, Jouanin L (1995) Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants. Plant Mol Biol 28(1):123–136

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95(12):7197–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40(6):893–908

    Article  CAS  PubMed  Google Scholar 

  • Guillet G, Poupart J, Basurco J, De Luca V (2000) Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes. Plant Physiol 122(3):933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison E, Burbidge A, Okyere JP, Thompson AJ, Taylor IB (2011) Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regul 64(3):301–309

    Article  CAS  Google Scholar 

  • He Y, Zhao Y (2015) A key link between jasmonic acid signaling and auxin biosynthesis. Sci Ch Life Sci 3:014

    Google Scholar 

  • He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23(11):3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentrich M, Bottcher C, Duchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74(4):626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Yue J, Hu X (2014) Origin of plant auxin biosynthesis in charophyte algae: a reply to Wang et al. Trends Plant Sci 19(12):743

    Article  CAS  PubMed  Google Scholar 

  • Hull AK, Celenza JL (2000) Bacterial expression and purification of the Arabidopsis NADPH-cytochrome P450 reductase ATR2. Protein Express Purif 18(3):310–315

    Article  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450 s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97(5):2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Hayashi K, Soeno K, Asami T, Nakamura S, Suzuki M, Nakamura A, Shimada Y (2014) Analysis of a putative auxin biosynthesis inhibitor, indole-3-oxoethylphosphonic acid, in Arabidopsis. Biosci Biotechnol Biochem 78(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Ismond KP, Dolferus R, de Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132(3):1292–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7(12):2023–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee H, Horsch R, Hinchee M, Hein M, Hoffmann N (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1(1):86–96

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64(9):2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriechbaumer V, Wang P, Hawes C, Abell BM (2012) Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J 70(2):292–302

    Article  CAS  PubMed  Google Scholar 

  • Kürsteiner O, Dupuis I, Kuhlemeier C (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol 132(2):968–978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR (1991) Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell 3(4):345–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 89(12):895–905

    Article  CAS  PubMed  Google Scholar 

  • Lemcke K, Prinsen E, van Onckelen H, Schmulling T (2000) The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxygenase activity. Mol Plant Microbe Interact 13(7):787–790

    Article  CAS  PubMed  Google Scholar 

  • Li J, Last R (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110(1):51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen S, Zhu L, Last RL (1995) Isolation of cDNAs encoding the tryptophan pathway enzyme indole-3-glycerol phosphate synthase from Arabidopsis thaliana. Plant Physiol 108(2):877–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26(8):785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magie AR, Wilson EE, Kosuge T (1963) Indoleacetamide as an intermediate in the synthesis of indoleacetic acid in Pseudomonas savastanoi. Science 141(3587):1281–1282

    Article  CAS  PubMed  Google Scholar 

  • Maharjan PM, Dilkes BP, Fujioka S, Pencik A, Ljung K, Burow M, Halkier BA, Choe S (2014) Arabidopsis gulliver1/SUPERROOT2-7 identifies a metabolic basis for auxin and brassinosteroid synergy. Plant J 80(5):797–808

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K, Suzuki M, Seki H, Fujii I, Muranaka T (2010) The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J Exp Bot 61(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108(45):18512–18517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100(3):1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275(43):33712–33717

    Article  CAS  PubMed  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19(6):2039–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemoto K, Hara M, Goto S, Kasai K, Seki H, Suzuki M, Oka A, Muranaka T, Mano Y (2009) The aux1 gene of the Ri plasmid is sufficient to confer auxin autotrophy in tobacco BY-2 cells. J Plant Physiol 166(7):729–738

    Article  CAS  PubMed  Google Scholar 

  • Neu D, Lehmann T, Elleuche S, Pollmann S (2007) Arabidopsis amidase 1, a member of the amidase signature family. FEBS J 274(13):3440–3451

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77(3):352–366

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Last RL, Fink GR, Keith B (1993) Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell 5(9):1011–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Normanly J (1997) Auxin metabolism. Physiol Plant 100(3):431–442

    Article  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci USA 90(21):10355–10359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24(3):327–333

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS (2013) Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS Genet 9(6):e1003564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Blakney AJ, Coulson TJ (2013) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 39(4):395–415

    Article  CAS  PubMed  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23(2):550–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci USA 110(3):1107–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowski M, Schonfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276(4):2616–2621

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S, Muller A, Piotrowski M, Weiler EW (2002) Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana. Planta 216(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62(3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler EW (2006) Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta 224(6):1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151(3):1130–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7(7):921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwanski ER, Barczak AJ, Last RL (1996) Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana. Mol Gen Genet MGG 253(3):353–361

    CAS  PubMed  Google Scholar 

  • Rapparini FCJ, Slovin JP (1999) Indole-3-acetic acid biosynthesis in Lemnagibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul 27:139–144

    Article  CAS  Google Scholar 

  • Reverberi M, Fanelli C, Zjalic S, Briganti S, Picardo M, Ricelli A, Fabbri AA (2005) Relationship among lipoperoxides, jasmonates and indole-3-acetic acid formation in potato tuber after wounding. Free Radic Res 39(6):637–647

    Article  CAS  PubMed  Google Scholar 

  • Ribnicky DM, Ilic N, Cohen JD, Cooke TJ (1996) The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism (the implications for carrot somatic embryogenesis). Plant Physiol 112(2):549–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribnicky DM, Cohen JD, Hu WS, Cooke TJ (2002) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214(4):505–509

    Article  CAS  PubMed  Google Scholar 

  • Rizzardi K, Landberg K, Nilsson L, Ljung K, Sundas-Larsson A (2011) TFL2/LHP1 is involved in auxin biosynthesis through positive regulation of YUCCA genes. Plant J 65(6):897–906

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Tivendale ND, Davidson SE, Reid JB, Davies NW, Quittenden LJ, Smith JA (2012) A mutation affecting the synthesis of 4-chloroindole-3-acetic acid. Plant Signal Behav 7(12):1533–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roumeliotis E, Visser RG, Bachem CW (2012) A crosstalk of auxin and GA during tuber development. Plant Signal Behav 7(10):1360–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider EA, Gibson RA, Wightman F (1972) Biosynthesis and metabolism of indol-3yl-acetic acid I.The native indoles of barley and tomato shoots. J Exp Bot 23(1):152–170

    Article  CAS  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116(2):687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45(11):1694–1703

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physio Biochem 82:209–217

    Article  CAS  Google Scholar 

  • Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460

    Article  CAS  PubMed  Google Scholar 

  • Sitbon F, Astot C, Edlund A, Crozier A, Sandberg G (2000) The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta 211(5):715–721

    Article  CAS  PubMed  Google Scholar 

  • Smith JK, Schloss JV, Mazur BJ (1989) Functional expression of plant acetolactate synthase genes in Escherichia coli. Proc Natl Acad Sci USA 86(11):4179–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51(4):524–536

    Article  CAS  PubMed  Google Scholar 

  • Songstad DD, De Luca V, Brisson N, Kurz WG, Nessler CL (1990) High levels of tryptamine accumulation in transgenic tobacco expressing tryptophan decarboxylase. Plant Physiol 94(3):1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189(21):7626–7633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenas M, Sundstrom JF, Eklund DM, Ljung K, Sundberg E (2012) The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol Biol 78(6):545–559

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17(8):2230–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23(11):3961–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirk WA, Novák O, Hradecká V (2009) Endogenous cytokinins, auxins and abscisic acid in Ulvafasciata (Chlorophyta) and Dictyotahumifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur J Phycol 44(2):231–240

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105(8):3151–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106(13):5430–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 8(3):e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Yokokura J, Ito T, Arai R, Yokoyama C, Toshima H, Nagata S, Asami T, Suzuki Y (2014) Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem Mol Biol 53:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sztein AE, Ilic N, Cohen JD, Cooke TJ (2002) Indole-3-acetic acid biosynthesis in isolated axes from germinating bean seeds: the effect of wounding on the biosynthetic pathway. Plant Growth Regul 36(3):201–207

    Article  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176. doi:10.1016/j.cell.2008.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859

    Article  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154(4):1957–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tivendale ND, Ross JJ, Cohen JD (2014) The shifting paradigms of auxin biosynthesis. Trends Plant Sci 19(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Torrens-Spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J (2013) Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J Biol Chem 288(4):2376–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trigueros M, Navarrete-Gomez M, Sato S, Christensen SK, Pelaz S, Weigel D, Yanofsky MF, Ferrandiz C (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21(5):1394–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursache R, Miyashima S, Chen Q, Vaten A, Nakajima K, Carlsbecker A, Zhao Y, Helariutta Y, Dettmer J (2014) Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development 141(6):1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100(1):215–225

    Article  CAS  PubMed  Google Scholar 

  • Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M (2001) Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212(4):508–516

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Y, Li SS, Han GZ (2014) Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci 19(12):741–743

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA 112(15):4821–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter A (1966) A hypothetical route for the biogenisis of IAA. Planta 71(3):229–239. doi:10.1007/BF00384885

    Article  CAS  PubMed  Google Scholar 

  • Wojcikowska B, Jaskola K, Gasiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238(3):425–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108(45):18518–18523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95(5):707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254(5034):998–1000

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151(1):168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26(7):2889–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimitsu Y, Tanaka K, Fukuda W, Asami T, Yoshida S, Hayashi K, Kamiya Y, Jikumaru Y, Shigeta T, Nakamura Y, Matsuo T, Okamoto S (2011) Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS ONE 6(8):e23851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu P, Hegeman AD, Cohen JD (2014) A facile means for the identification of indolic compounds from plant tissues. Plant J 79(6):1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Hu X, Huang J (2014) Origin of plant auxin biosynthesis. Trends Plant Sci 19:764–770

    Article  CAS  PubMed  Google Scholar 

  • Zdunek-Zastocka E (2008) Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol Biochem PPB/Societe francaise de physiologie vegetale 46(1):19–28

    Article  CAS  Google Scholar 

  • Zhang R, Wang B, Ouyang J, Li J, Wang Y (2008) Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol 50(9):1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Ann Rev Plant Biol 61:49–64

    Article  CAS  Google Scholar 

  • Zhao Y (2014) Auxin biosynthesis. Arabidopsis B 12:e0173. doi:10.1199/tab.0173

    Article  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291(5502):306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450 s CYP79B2 and CYP79B3. Genes Dev 16(23):3100–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Guo Y, Novak O, Dai X, Zhao Y, Ljung K, Noel JP, Chory J (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9(4):244–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZY, Zhang CG, Wu L, Chai J, Wang M, Jha A, Jia PF, Cui SJ, Yang M, Chen R, Guo GQ (2011) Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J 66(3):516–527

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang KX, Wang WS, Gong W, Liu WC, Chen HG, Xu HH, Lu YT (2015) Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol 56(4):727–736

    Article  PubMed  Google Scholar 

  • Ziegler DM (1990) Flavin-containing monooxygenases: enzymes adapted for multisubstrate specificity. Trends Pharmacol Sci 11(8):321–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Chinese National Science Foundation (31030045 and 31371431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wei Di.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, DW., Zhang, C., Luo, P. et al. The biosynthesis of auxin: how many paths truly lead to IAA?. Plant Growth Regul 78, 275–285 (2016). https://doi.org/10.1007/s10725-015-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0103-5

Keywords

Navigation