Skip to main content
Log in

Influence of exogenous spermidine on carbon–nitrogen metabolism under Ca(NO3)2 stress in cucumber root

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the effect of exogenous spermidine (Spd) on cucumber (Cucumis sativus L. cv. Jinyou No. 4) growth and carbon–nitrogen balance under 80 mM Ca(NO3)2 stress. The result showed that leaf-applied Spd (1 mM) treatment alleviated the growth inhibition caused by Ca(NO3)2 stress by regulating the carbon–nitrogen balance in cucumber seedlings. The application of exogenous Spd effectively regulated the transcription levels and activities of major carbon–nitrogen metabolism enzymes, resulting in a significant decrease of NO3 and NH4 + contents under Ca(NO3)2 stress. In addition, Spd treatment remarkably increased the accumulation of soluble carbohydrates (sucrose, fructose and glucose), thus protected enzyme activities related N metabolism and effectively promoted NO3 assimilation under Ca(NO3)2 stress. Exogenous Spd also enhanced total amino acids, which serve as the building blocks of protein, and promoted the biosynthesis of soluble protein. In the presence of Spd, total C content and the C/N ratio increased significantly, while total N content decreased in response to Ca(NO3)2 stress. Based on our results, we suggested that exogenous Spd could effectively accelerate nitrate transformation into amino acids and improve the accumulation of carbon assimilation production, thereby enhancing the ability of the plants to maintain their C–N balance, and eventually promote the cucumber Ca(NO3)2 stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

GOGAT:

Glutamate synthase

GOT:

Glutamic-oxaloacetic transaminase

GPT:

Glutamic-pyruvic transaminase

GS:

Glutamine synthetase

ICDH:

Isocitrate dehydrogenase

NiR:

Nitrite reductase

NR:

Nitrate reductase

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Aarnes H, Eriksen AB, Petersen D, Rise F (2007) Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14 N-NMR. J Exp Bot 58(5):929–934

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6):1237–1249

    Article  PubMed  Google Scholar 

  • Alla MMN, Khedr AHA, Serag MM, Abu-Alnaga AZ, Nada RM (2012) Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regul 67(3):281–304

    Article  Google Scholar 

  • Ashraf M, Foolad MA (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol 36:1525–1529

    CAS  Google Scholar 

  • Basu PS, Ali M, Chaturvedi SK (2007) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45(3):261–267

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Buysse J, Merckx R (1993) An important colorimetric method to quantify sugar content of 307 plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Datta R, Sharma R (1999) Temporal and spatial regulation of nitrate reductase and nitrite reductase in greening maize leaves. Plant Sci 144:77–83

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Jia Y, Guo S, Lv G, Wang T, Juan L (2011) Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance. J Plant Physiol 168:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155(4):1566–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González EM, Aparicio-Tejo PM, Gordon AJ, Minchin FR, Royuela M, Arrese-Igor C (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49(327):1705–1714

    Article  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35(7):2015–2036

    Article  CAS  Google Scholar 

  • Hayashi F, Ichino T, Osanai M, Wada K (2000) Oscillation and regulation of proline content by P5Cs and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L. Plant Cell Physiol 41:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • He FF, Chen Q, Jiang RF, Chen XP, Zhang FS (2007) Yield and nitrogen balance of greenhouse tomato (Lycopersium esculentum Mill.) with conventional and site-specific nitrogen management in northern China. Nutr Cycl Agroecosyst 77:1–14

    Article  Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53(370):905–916

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    Article  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52(363):1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  CAS  PubMed  Google Scholar 

  • Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72(3):257–268

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45(6):712–722

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview, Chap. 1. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin, pp 1–28

    Chapter  Google Scholar 

  • Krapp A, Truong HN (2005) Regulation of C/N interaction in model plant species. In: Goyal S, Tischner R, Basra A (eds) Enhancing the efficiency of nitrogen utilization in plants. Haworth Press, New York, pp 127–173

    Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53(370):773–787

    Article  CAS  PubMed  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wu Z, Liang C, Chen L (2004) Characteristics and regulation of greenhouse soil environment. Chin J Ecol 23:192–197

    CAS  Google Scholar 

  • Lin CC, Kao CH (1996) Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul 18:233–238

    Article  CAS  Google Scholar 

  • Liu C, Wang Y, Pan K, Zhu T, Li W, Zhang L (2014) Carbon and nitrogen metabolism in leaves and roots of dwarf bamboo (Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J Plant Growth Regul 33:243–255

    Article  CAS  Google Scholar 

  • Lòpez-Millàn AF, Morales F, Andaluz S, Gogorcena Y, Abadìa A, De Las Rivas J, Abadìa J (2000) Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol 124:885–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Mattoo AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen–carbon interactions. Plant Physiol 142:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Dubey RS (2011) Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regul 64(3):251–261

    Article  CAS  Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169:331–339

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon–nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • Qiao X, Wang P, Shi G, Yang H (2015) Zinc conferred cadmium tolerance in Lemna minor L. via modulating polyamines and proline metabolism. Plant Growth Regul 77(1):1–9

    Article  CAS  Google Scholar 

  • Reda M, Migocka M, Klobus G (2011) Effect of short-term salinity on the nitrate reductase activity in cucumber roots. Plant Sci 180:783–788

    Article  CAS  PubMed  Google Scholar 

  • Repčák M, Pal’ove-Balang P, Dučaiová Z, Sajko M, Bendek F (2014) High nitrogen supply affects the metabolism of Matricaria chamomilla leaves. Plant Growth Regul 73(2):147–153

    Article  Google Scholar 

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP (2012) Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino Acids 42:857–865

    Article  CAS  PubMed  Google Scholar 

  • Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U (2012) Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol 160:1384–1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize ear shoots: implications for assimilate preconditioning and nitrogen signaling. Plant Physiol 136:4326–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Dietz K (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Chan Z (2013a) Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermuda grass (Cynodon dactylon) response to salt and drought stresses. J Proteome Res 12:4807–4829

    Article  Google Scholar 

  • Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z (2013b) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: Effect on arginine metabolism and ROS accumulation. J Exp Bot 64:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Várhegyi Á, Galiba G, De Ronde JA (2006) Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Plant Biol 50:793–796

    Article  CAS  Google Scholar 

  • Singh RP, Srivastava HS (1983) Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiol Plant 57:549–554

    Article  CAS  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18(10):2767–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhy pochlorite method. Limnol Oceanogr 14:799–801

    Article  CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Huang A, Sang Y, Fu Y, Yang Z (2013) Carbon–nitrogen interaction modulates plant growth and expression of metabolic genes in rice. J Plant Growth Regul 32:575–584

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tang ZC (1999) Experimental guide of modern plant physiology. Science Press, Shanghai, pp 138–139, 154–157

  • Todorova D, Sergiev I, Alexieva V, Karanov E, Smith A, Hall M (2007) Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regul 51:185–191

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:1–10

    Article  Google Scholar 

  • Yu H, Li T, Zhou J (2005) Secondary salinization of greenhouse soil and its effects on soil properties. Soils 37:581–586

    CAS  Google Scholar 

  • Yuan L, Yuan Y, Du J, Sun J, Guo S (2012) Effects of 24-epibrassinolide on nitrogen metabolism in cucumber seedlings under Ca(NO3)2 stress. Plant Physiol Bioch 61:29–35

    Article  CAS  Google Scholar 

  • Zhang YH, Zhang G, Liu LY, Zhao K, Wu LS, Hu CX, Di HJ (2011) The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism of Brassica campestris L. var. Tsen et Lee. Plant Growth Regul 64(2):193–202

    Article  CAS  Google Scholar 

  • Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, Zhang H, Zhao JZ (2013) Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline-alkaline stress. J Amer Soc Hort Sci 138(1):28–49

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 31471869, No. 31272209 and No. 31401919), the National Key Technology R&D Program (2013BAD20B05), the Jiangsu Province Scientific and Technological Achievements into Special Fund (BA2014147), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Shu, S., An, Y. et al. Influence of exogenous spermidine on carbon–nitrogen metabolism under Ca(NO3)2 stress in cucumber root. Plant Growth Regul 81, 103–115 (2017). https://doi.org/10.1007/s10725-016-0193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0193-8

Keywords

Navigation