Skip to main content
Log in

Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses.

Abstract

Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules––auxin and nitric oxide (NO)––in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·−, H2O2, and MDA), antioxidant system (enzymatic––APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic––AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate–glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available as per the request.

Abbreviations

AsA:

Ascorbate

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GR:

Glutathione reductase

GSH:

Glutathione

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

NPQ:

Non-photochemical quenching

P5CS:

Δ1-Pyrroline-5-carboxylate synthetase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Khan WU, Shah AA, Yasin NA, Naz S, Ali A et al (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:128384

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Réthoré E, Yvin JC, Hosseini SA (2020) The regulatory role of silicon in mitigating plant nutritional stresses. Plants 9:1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo WBS, Teixeira GCM, de Mello PR, Rocha AMS (2022) Silicon mitigates nutritional stress of nitrogen, phosphorus, and calcium deficiency in two forages plants. Sci Rep 12:6611

    Article  PubMed  PubMed Central  Google Scholar 

  • Arif Y, Singh P, Bajguz A, Alam P, Hayat S (2021) Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. Plant Physiol Biochem 166:278–289

    Article  CAS  PubMed  Google Scholar 

  • Arnaud C, Clément M, Thibaud MC, Javot H, Chiarenza S, Delannoy E et al (2014) Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis. Plant Physiol 166:1479–1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Brehe JE, Burch HB (1976) Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  CAS  PubMed  Google Scholar 

  • Buet A, Galatro A, Ramos-Artuso F, Simontacchi M (2019) Nitric oxide and plant mineral nutrition: current knowledge. J Exp Bot 70:4461–4476

    Article  CAS  PubMed  Google Scholar 

  • Carstensen A, Herdean A, Schmidt SB, Sharma A, Spetea C, Pribil M, Husted S (2018) The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol 177:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh G, Siddique KH, Solaiman ZM (2021) Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges. Sustainability 13:1781

    Article  CAS  Google Scholar 

  • Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30:1340–1357

    Article  Google Scholar 

  • Cooper J, Lombardi R, Boardman D, Carliell-Marquet C (2011) The future distribution and production of global phosphate rock reserves. Resour Conserv Recycl 57:78–86

    Article  Google Scholar 

  • Corpas FJ, Del Río LA, Palma JM (2019) Impact of nitric oxide (NO) on the ROS metabolism of peroxisomes. Plants 8(2):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, González-Gordo S, Palma JM (2022) NO source in higher plants: present and future of an unresolved question. Trends Plant Sci 27(2):116–119

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2016) Auxin and nitric oxide: a counterbalanced partnership ensures the redox cue control required for determining root growth pattern. Adv Bot Res 77:41–54

    Article  Google Scholar 

  • de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK (2021) The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol 229:2446–2469

    Article  PubMed  Google Scholar 

  • de Oliveira RLL, de Mello PR, Felisberto G, Checchio MV, Gratão PL (2019) Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. J Soil Sci Plant Nutr 19:524–534

    Article  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:267

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Safe 147:881–896

    Article  CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Guzmán P, Peirce CA, McBeath TM, Khayet M, McLaughlin MJ (2014) Effect of wheat phosphorus status on leaf surface properties and permeability to foliar-applied phosphorus. Plant Soil 384:7–20

    Article  Google Scholar 

  • García-Ríos M, Fujita T, LaRosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proc Natl Acad Sci USA 94:8249–8254

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR (2022) Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol 24:227–239

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ (2022) Nitric oxide regulation of plant metabolism. Mol Plant 15:228–242

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordreht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Peng Q, Wang X, Fan C, Pang J, Lambers H, Zhang X (2017) Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant Soil 416:565–584

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular 347, 2nd edn

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Huang G, Zhang D (2020) The plasticity of root systems in response to external phosphate. Int J Mol Sci 21:5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Shafiq I, Skalicky M, Brestic M, Rastogi A, Mumtaz M et al (2021) Titanium application increases phosphorus uptake through changes in auxin content and root architecture in soybean (Glycine Max L.). Front Plant Sci 12:743618

    Article  PubMed  PubMed Central  Google Scholar 

  • Iqbal S, Riaz U, Murtaza G, Jamil M, Ahmed M, Hussain A, Abbas Z (2021) Chemical fertilizers, formulation, and their influence on soil health. In: Hakeem KR, Dar GH, Aneesul M, Bhat RA (eds) Microbiota and biofertilizers: a sustainable continuum for plant and soil health. Springer Nature, Switzerland, pp 1–15

    Google Scholar 

  • Karimian N, Nazari F, Samadi S (2021) Morphological and biochemical properties, leaf nutrient content, and vase life of tuberose (Polianthes tuberosa L.) affected by root or foliar applications of silicon (Si) and silicon nanoparticles (SiNPs). J Plant Growth Regul 40:2221–2235

    Article  CAS  Google Scholar 

  • Kaur G, Asthir BJBP (2015) Proline: a key player in plant abiotic stress tolerance. BiolP Plant 59:609–619

    Article  CAS  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA (2021) The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: an entrancing crosstalk between stress alleviators. Plant Physiol Biochem 162:36–47

    Article  CAS  PubMed  Google Scholar 

  • Koentjoro Y, Purwanto E, Purnomo D (2021) The role of silicon on content of proline, protein and abscisic acid on soybean under drought stress. IOP Conf Ser: Earth Environ Sci 637(1):012086

    Article  Google Scholar 

  • Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455

    Article  CAS  Google Scholar 

  • Li LQ, Huang LP, Pan G, Liu L, Wang XY, Lu LM (2017) Identifying the genes regulated by AtWRKY6 using comparative transcript and proteomic analysis under phosphorus deficiency. Int J Mol Sci 18:1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture. From theory to practice. Springer, Dordrecht

    Book  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu Y, von Wirén N (2022) Integration of nutrient and water availabilities via auxin into the root developmental program. Curr Opin Plant Biol 65:102117

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Lin SH, Xu PL, Wang XJ, Bai JG (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China 8:1075–1086

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv X, Zhang Y, Hu L, Zhang Y, Zhang B, Xia H et al (2021) Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: roles of phytohormone signaling. J Plant Growth Regul 40:436–450

    Article  CAS  Google Scholar 

  • Mavrič Čermelj A, Golob A, Vogel-Mikuš K, Germ M (2021) Silicon mitigates negative impacts of drought and UV-B radiation in plants. Plants 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, Aghdasi M (2015) Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere 25:192–201

    Article  CAS  Google Scholar 

  • Meng X, Chen WW, Wang YY, Huang ZR, Ye X, Chen LS, Yang LT (2021) Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE 16:e0246944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021) Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 26(12):1270–1285

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 41:918–934

    Article  CAS  PubMed  Google Scholar 

  • Muneer S, Park YG, Kim S, Jeong BR (2017) Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J Plant Growth Regul 36:836–845

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7:40829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega A, De Marcos A, Illescas-Miranda J, Mena M, Fenoll C (2019) The tomato genome encodes SPCH, MUTE, and FAMA candidates that can replace the endogenous functions of their Arabidopsis orthologs. Front Plant Sci 10:1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan XW, Li WB, Zhang QY, Li YH, Liu MS (2008) Assessment on phosphorus efficiency characteristics of soybean genotypes in phosphorus-deficient soils. Agric Sci China 7:958–969

    Article  CAS  Google Scholar 

  • Pandey C, Khan E, Panthri M, Tripathi RD, Gupta M (2016) Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol Biochem 104:216–225

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KH, Bolland MD et al (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331:241–255

    Article  CAS  Google Scholar 

  • Parveen N, Kandhol N, Sharma S, Singh VP, Chauhan DK, Ludwig-Müller J et al (2022) Auxin crosstalk with reactive oxygen and nitrogen species in plant development and abiotic stress. Plant Cell Physiol 63:1814–1825

    Article  CAS  Google Scholar 

  • Pélissier PM, Motte H, Beeckman T (2021) Lateral root formation and nutrients: nitrogen in the spotlight. Plant Physiol 187:1104–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pongrac P, Castillo-Michel H, Reyes-Herrera J, Hancock RD, Fischer S, Kelemen M et al (2020) Effect of phosphorus supply on root traits of two Brassica oleracea L. genotypes. BMC Plant Biol 20:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveen A, Gupta M (2018) Nitric oxide confronts arsenic stimulated oxidative stress and root architecture through distinct gene expression of auxin transporters, nutrient related genes and modulates biochemical responses in Oryza sativa L. Environ Pollut 240:950–962

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P et al (2021) Does silicon really matter for the photosynthetic machinery in plants…? Plant Physiol Biochem 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Reezi S, Kalantari MBS, Okhovvat SM, Jeong BR (2009) Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa xhybrida L.) ‘Hot Lady.’ African J Biotechnol 8:1502

    CAS  Google Scholar 

  • Rena AB, Splittstoesser WE (1975) Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons. Phytochemistry 14:657–661

    Article  CAS  Google Scholar 

  • Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS et al (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4:767–781

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Romera FJ, Lucena C, García J, Alcántara E, Angulo M, Aparicio MÁ, Pérez-Vicente R (2021) Plant hormones and nutrient deficiency responses. In: Gupta DK, Corpas FJ (eds) Hormones and plant response. Springer Nature, Switzerland, pp 29–65

    Chapter  Google Scholar 

  • Sales AC, Campos CNS, de Souza Junior JP, da Silva DL, Oliveira KS, de Mello PR et al (2021) Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.). Sci Rep 11:14665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, Del Río LA (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Method Enzymol 440:397–409

    Article  CAS  Google Scholar 

  • Schaedle M, Bassham A (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10:675–680

    Article  Google Scholar 

  • Sharma E, Sharma R, Borah P, Jain M, Khurana JP (2015) Emerging roles of auxin in abiotic stress responses. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives, vol 1. Springer, New York, pp 299–328

    Chapter  Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B et al (2020) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Plant 168:318–344

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M (2022) Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. Plant Physiol Biochem 179:10–24

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36

    Article  CAS  PubMed  Google Scholar 

  • Shivaraj SM, Mandlik R, Bhat JA, Raturi G, Elbaum R, Alexander L et al (2022) Outstanding questions on the beneficial role of silicon in crop plants. Plant Cell Physiol 63:4–18

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R et al (2022) Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol Plant 174:e13065

    Article  CAS  PubMed  Google Scholar 

  • Singhal RK, Jatav HS, Aftab T, Pandey S, Mishra UN, Chauhan J et al (2021) Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators. J Plant Growth Regul 40:2303–2328

    Article  CAS  Google Scholar 

  • Sofo A, Scopa A, Hashem A, Abd-Allah EF (2016) Lipid metabolism and oxidation in plants subjected to abiotic stresses. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: Responses and approaches to mitigate stress. John Wiley and Sons, Hoboken, pp 205–213

    Chapter  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Chapter  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. CRC Press, London, pp 445–483

    Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Shen J, Zhang F, Rengel Z (2013) Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Sci China Life Sci 56:313–323

    Article  CAS  PubMed  Google Scholar 

  • Teixeira GCM, Prado RDM, Oliveira KS, D’Amico-Damião V, Sousa Junior GDS (2020) Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in sorghum plants. J Soil Sci Plant Nutr 20:1311–1320

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2007) Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol 49:313–322

    Article  CAS  Google Scholar 

  • Thakur A, Singh A, Tandon A, Sharma V (2023) Insights into the molecular mechanisms of uptake, phytohormone interactions and stress alleviation by silicon: a beneficial but non-essential nutrient for plants. Plant Growth Regul 101:1–13

    Article  CAS  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Chauhan DK, Prasad SM, Dubey NK (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:214627

    Article  Google Scholar 

  • Tripathi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK et al (2020) Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Sci Rep 10:14078

    Article  Google Scholar 

  • Tripathi DK, Rai P, Guerriero G, Sharma S, Corpas FJ, Singh VP (2021a) Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid. J Exp Bot 72:4457–4471

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Subedi S, Khan AL, Chung YS, Kim Y (2021b) Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants 10:885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Rai P, Kandhol N, Kumar A, Sahi S, Corpas FJ et al (2022) Silicon palliates chromium toxicity through the formation of root hairs in rice (Oryza sativa) mediated by GSH and IAA. Plant Cell Physiol 63:1943–1953

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva AJPS (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vieira-Filho LO, Monteiro FA (2022) Silicon improves photosynthetic activity and induces antioxidant enzyme activity in Tanzania Guinea grass under copper toxicity. Plant Stress 3:100045

    Article  CAS  Google Scholar 

  • Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2020) Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: Implication of nitric oxide. J Hazard Mater 390:121806

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang B, Jiang D, Chen G (2019) Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environ Exp Bot 158:117–124

    Article  CAS  Google Scholar 

  • Wu C, Wei X, Sun HL, Wang ZQ (2005) Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr. seedlings. J Integ Plant Biol 47:292–301

    Article  CAS  Google Scholar 

  • Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W (2013) Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot 64(10):3045–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Gill RA, Arif N, Gill SA, Singh VP, Ramawat N, Chauhan DK (2021) Endogenous indole-3-acetic acid and nitric oxide are required for calcium-mediated alleviation of copper oxide nanoparticles toxicity in wheat seedlings. Physiol Plant 173:2262–2275

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Blackwell M, Mcgrath S, George TS, Granger SH, Hawkins JMB et al (2016) Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils. J Agric Sci 154:98–108

    Article  Google Scholar 

  • Zažímalová E, Petrášek J, Benková E (eds) (2014) Auxin and its role in plant development. Springer, Vienna, pp 2675–2688

    Google Scholar 

  • Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9:733

    Article  CAS  Google Scholar 

  • Zhang H, Zhu J, Gong Z, Zhu JK (2022a) Abiotic stress responses in plants. Nat Rev Genet 23:104–119

    Article  PubMed  Google Scholar 

  • Zhang Q, Gong M, Xu X, Li H, Deng W (2022b) Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 11:2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V (2021) Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Rep 40:1395–1414

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DKT conceptualized the idea for the experiment. NK performed the experiment. VPS, PR, VM provided assistance in biochemical and molecular work. NK wrote the manuscript. DKT, VPS, SP, SK, RD and SS critically evaluated and edited the manuscript.

Corresponding authors

Correspondence to Vijay Pratap Singh or Durgesh Kumar Tripathi.

Ethics declarations

Conflict of interest

All the authors have declared no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandhol, N., Rai, P., Mishra, V. et al. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots. Planta 259, 144 (2024). https://doi.org/10.1007/s00425-024-04364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04364-8

Keywords

Navigation