Skip to main content
Log in

Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The protective effects of free polyamines (PAs) against salinity stress were investigated for pistachio seedlings (Pistacia vera cv. Badami-Zarand) in a controlled greenhouse. Seedlings were treated with 25, 50, 100 and 150 mM of salts including NaCl, CaCl2 and MgCl2. Foliar treatments of putrescine, spermidine (Spd) and spermine (Spm) (0.1 and 1 mM) were applied during the salinity period. Results showed that growth characteristics of pistachio seedlings decreased under salinity stress and the application of PAs efficiently reduced the adverse effects of salt stress. PAs reduced the severe effects of salt stress in pistachio seedlings neither by increasing the activities of peroxidase and ascorbate peroxidase nor by increasing the proline content but by increasing the activities of superoxide dismutase and catalase and decreasing the hydrogen peroxide (H2O2) activity. PAs treated seedlings showed a lower Na+:K+ ratio and Cl in leaves suggesting the role of PAs in balancing the ion exchange and better Na+:K+ discrimination under salt stress condition. These results showed the promising potential use of PAs especially Spm and Spd for reducing the negative effects of salinity stress and improving the growth of pistachio seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

H2O2 :

Hydrogen peroxide

PAs:

Polyamines

POD:

Peroxidase

Put:

Putrescine

ROS:

Reactive oxygen species

SAR:

Sodium adsorption ratio

SOD:

Superoxide dismutase

Spd:

Spermidine

Spm:

Spermine

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Alkhani H, Ghorbani M (1992) A contribution to the halophytic vegetation and flora of Iran. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants. Kluwer, Dordrecht, pp 35–44

    Google Scholar 

  • Amri E, Mirzaei M, Moradi M, Zare K (2011) The effect of spermidin and putrescine polyamine on growth of pomegranate (Punica granatum) in salinity circumstance. Int J Plant Physiol Biochem 3:43–49

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    Article  CAS  Google Scholar 

  • Bates L, Waldren PP, Teare JD (1973) Rapid determination of the free proline of water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe OI, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidant in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bradford MN (1979) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose AS, Engupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. J Plant Physiol 116:192–199

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annal Bot 103:551–560

    Article  CAS  Google Scholar 

  • Das S, Bose A, Gosh B (1995) Effect of salt stress on polyamine metabolism in Brassica compestris. Photochemistry 39:283–285

    Article  CAS  Google Scholar 

  • De Pascale S, Maggio A, Barbieri G, Ruggiero C (2003) Physiological response of pepper (Capsicum annuum L.) to salinity and drought. J Am Soc Hortic Sci 128:48–54

    Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. BBA-Bioenergetics 1767:272–280

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sesc LM, Tobita S (1998) Antioxidant response of rice seedling to salinity stress. Plant Sci 35:1–9

    Article  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to a biotic stress. Bot Acta 110:197–207

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Estimation of starch by anthrone reagent. In: Whistler RL, Be-Miller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York

  • Janicka-Russak ML, Kabala KK, Mlodzinska E, Klobus G (2010) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269

    Article  CAS  PubMed  Google Scholar 

  • Kara M, Mishra D (1976) Catalase, peroxidase, polyphenoloxidase activities during since leaf senescence. Plant Physiol 54:315–319

    Article  Google Scholar 

  • Karimi S, Rahemi M, Maftoun M, Tavallali V (2009) Effects of long-term salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks. Aust J Basic Appl Sci 3:1630–1639

    CAS  Google Scholar 

  • Khezri M, Talaie A, Javanshah A, Hadavi F (2010) Effect of exogenous application of free polyamines on physiological disorders and yield of ‘Kaleh-Ghoochi’ pistachio shoots (Pistacia vera L.). Sci Hortic 125:270–276

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate–peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Peltzer D, Dreyer E, Polle A (2002) Differential temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiol Biochem 40:141–150

    Article  CAS  Google Scholar 

  • Rhoades JD (1982) Soluble salts. In: Page AL (ed) Methods of soil analysis, 2nd edn. ASA, Madison, pp 167–178

    Google Scholar 

  • Sepaskhah AR, Maftoun M (1988) Relative salt tolerance of pistachio cultivars. J Hortic Sci 63:157–162

    Google Scholar 

  • Sharma P, Dubey RS (2010) Protein synthesis by plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. CRC Press, Boca Raton, pp 465–518

    Chapter  Google Scholar 

  • Smogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–29

    CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced-oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L.) seedlings. Turk J Agri 34:349–359

    CAS  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization and regulation in response of stress to plants. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordancv I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 62:669–677

    Article  Google Scholar 

  • Williams S, Twine N (1960) Flame photometric method for sodium, potassium and calcium in modern methods of plant analysis. In: Peach K, Tracey MV (eds). Springer, Berlin

  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ 55:213–221

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trend Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Zahra Pakkish and Dr. Mehdi Sarcheshmehpour for their guidance on enzyme assays and salt treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Khezri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiab, F., Talaie, A., Khezri, M. et al. Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72, 257–268 (2014). https://doi.org/10.1007/s10725-013-9857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9857-9

Keywords

Navigation