Skip to main content
Log in

Quantitative trait loci mapping for heading date and spikelet number in wheat (Triticum aestivum L.)based on two recombinant inbred line populations

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Heading date (HD) and total spikelet number per spike (SNS) play important roles in the yield improvement of wheat. HD often influences the formation of total spikelets. Identifying various genes that control HD and SNS is vital for the yield improvement of wheat. Here, we used two recombinant inbred line (RIL) populations derived from crosses of Yangmai 12 (YM12)/Yanzhan 1 (YZ1) and Yangmai 4 (YM4)/YZ1 to construct two genetic linkage maps and identify QTL for HD and SNS. A total of sixteen QTL were detected, among which three QTL for HD and three QTL for SNS detected in the YM12/YZ1 population overlapped those detected in the YM4/YZ1 population, respectively. Two pleiotropic QTL regions (Cluster-2B and Cluster-7D) simultaneously controlling HD and SNS were detected in both two populations. Among the QTL for SNS, only the favored allele of QSns.Y12Y-2A/QSns.Y4Y-2A had a significantly positive effect on grain number per spike without negatively affecting thousand-grain weight. A kompetitive allele-specific PCR (KASP) marker for QSns.Y12Y-2A/QSns.Y4Y-2A had been developed and verified in a set of 256 diverse cultivars/lines to facilitate its applications. Then the genes within the physical interval of QSns.Y12Y-2A/QSns.Y4Y-2A were analyzed based on the spatiotemporal expression patterns, gene annotation, and orthologous search. Six candidate genes were expressed specially in spike or spikelet. These results provide a solid foundation for future fine mapping and cloning of QSns.Y12Y-2A/QSns.Y4Y-2A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data will be available on request.

Code availability

Not applicable.

References

  • Andrew K, Patrick B, Scott R, Sarah B, Scott H, Stephen P (2022) Identification and validation of a QTL for spikelet number on chromosome arm 6BL of common wheat (Triticum aestivum L.). Mol Breeding 42:17. https://doi.org/10.1007/s11032-022-01288-7

    Article  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    Article  CAS  PubMed  Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crop Res 86:131–146

    Article  Google Scholar 

  • Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao MS, Dong JZ, Wang H, Cai YB, Ma TH, Zhou XH, Xiao JG, Li SH, Chen LQ, Xu HY, Zhao CH, Wu YZ, Sun H, Ji J, Cui F, Qin R (2022) Identification of a major stable QTL for spikelet number in wheat (Triticum aestivum L.) and its genetic effects analysis on yield-related traits. Euphytica 218:96. https://doi.org/10.1007/s10681-022-03050-8

    Article  CAS  Google Scholar 

  • Chen SL, Gao RH, Wang HY, Wen MX, Xiao J, Bian NF, Zhang RQ, Hu WJ, Cheng SH, Bie TD, Wang XE (2014) Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 203:583–594

    Article  Google Scholar 

  • Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W (2020a) A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the triticeae tribe as a pilot practice in the plant pangenomic Era. Mol Plant 13:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Chen ZY, Cheng XJ, Chai LL, Wang ZH, Du DJ, Wang ZH, Bian RL, Zhao AJ, Xin MM, Guo WL, Hu ZR, Peng HR, Yao YY, Sun QX, Ni ZF (2020b) Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet 133:1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Ding AM, Li J, Zhao CH, Wang L, Wang XQ, Qi XL, Li XF, Li GY, Gao JR, Wang HG (2012) QTL detection of seven spiker related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Dixon LE, Farre A, Finnegan EJ, Orford S, Griffiths S, Boden SA (2018) Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1. Plant Cell Environ 41:1715–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Faricelli ME, Valárik M, Dubcovsky J (2010) Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct Integr Genom 10:293–306

    Article  CAS  Google Scholar 

  • Faris JD, Zhang Z, Garvin DF, Xu SS (2014) Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol Genet Genom 289:641–651

    Article  CAS  Google Scholar 

  • Finnegan EJ, Ford B, Wallace X, Pettolino F, Griffin PT, Schmitz RJ, Zhang P, Barrero JM, Hayden MJ, Boden SA, Cavanagh CA, Swain SM, Trevaskis B (2018) Zebularine treatment is associated with deletion of FT-B1 leading to an increase in spikelet number in bread wheat. Plant Cell Environ 41:1346–1360

    Article  CAS  PubMed  Google Scholar 

  • Gao FM, Wen WE, Liu JD, Rasheed A, Yin GH, Xia XC, Wu XX, He ZH (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099

    Article  PubMed  PubMed Central  Google Scholar 

  • Guedira M, Xiong M, Hao YF, Johnson J, Harrison S, Marshall D, Brown-Guedira G (2016) Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE 11:e0154242

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu JM, Wang XQ, Zhang GX, Jiang P, Chen WY, Hao YC, Ma X, Xu SS, Jia JZ, Kong LR, Wang HW (2020) QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet 133:917–933

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Liao S, Zhao D, Jia JZ, Xu WG, Cheng SH (2022) Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture 12:822

    Article  CAS  Google Scholar 

  • Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L (2020) A novel QTL on chromosome 5AL of Yangmai158 increases resistance to Fusarium head blight in wheat. Plant Pathol 69:249–258

    Article  CAS  Google Scholar 

  • Kamran A, Randhawa HS, Yang RC, Spaner D (2014) The effect of VRN1 genes on important agronomic traits in high-yielding Canadian soft white spring wheat. Plant Breed 133:321–326

    Article  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kumar S, Sharma V, Chaudhary S, Tyagi A, Mishra P, Priyadarshini SA (2012) Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat. J Genet 91:33–47

    Article  PubMed  Google Scholar 

  • Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Peters Haugrud A, Faris JD, Akhunov E, Bai G, Dubcovsky J (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet 132:2689–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li YP, Fu X, Zhao MC, Zhang W, Li B, An DG, Li JM, Zhang AM, Liu RY, Liu XG (2018) A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci Rep 8:15338

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J (2019) Wheat VRN1 and FUL2 play critical and redundant roles in spikelet meristem identity and spike determinacy. Development 146:175398

    Article  Google Scholar 

  • Li T, Deng GB, Su Y, Yang Z, Tang YY, Wang JH, Qiu XB, Pu X, Li J, Liu ZH, Zhang HL, Liang JJ, Yang WY, Yu MQ, Wei YM, Long H (2021a) Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet 134:3625–3641

    Article  CAS  PubMed  Google Scholar 

  • Li T, Deng GB, Tang YY, Su Y, Wang JH, Cheng J, Zhao Y, Qiu XB, Pu X, Zhang HL, Liang JJ, Yu MQ, Wei YM, Long H (2021b) Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci 12:611106

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Muqaddasi QH, Brassac J, Koppolu R, Plieske J, Ganal MW, Roder MS (2019) TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploidy winter wheat (Triticum aestivum L.) varieties. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-50331-9

    Article  CAS  Google Scholar 

  • Muterko A, Kalendar R, Cockram J, Balashova I (2015) Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat. Plant Mol Biol 88:149–164

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AT, Iehisa JCM, Mizuno N, Nitta M, Nasuda SH, Takumi SG (2013) Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat. Breed Sci 63:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Ochagavia H, Prieto P, Savin R, Griffiths S, Slafer G (2018) Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot 69:2621–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugsley AT (1971) A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res 22(1):21–31

    Article  Google Scholar 

  • Rasheed A, Wen WE, Gao FM, Zhai SN, Jin H, Liu JD, Guo Q, Zhang YJ, Dreisigacker S, Xia XC, He ZH (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Reidt W, Wurz R, Wanieck K, Chu HH, Puchta H (2006) A homologue of the breast cancer-associated gene BARD1 is involved in DNA repair in plants. EMBO J 25(18):4326–4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Kotani H, Tabata S (2000) Structural analysis of Arabidopsis thaliana chromosome 5. X. Sequence features of the regions of 3,076,755 bp covered by sixty P1 and TAC clones. DNA Res 7(1):31–63

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Avivi-Ragolsky N, Levy AA (2006) Involvement of the Arabidopsis SWI2/SNF2 chromatin remodeling gene family in DNA damage response and recombination. Genetics 173(2):985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherban A, Emtseva M, Efremova T (2012) Molecular genetical characterization of vernalization genes Vrn-A1, Vrn-B1 and Vrn-D1 in spring wheat germplasm from Russia and adjacent regions. Cereal Res Commun 40:351–361

    Article  CAS  Google Scholar 

  • Siggaard-Andersen M, Kauppinen S, von Wettstein-Knowles P (1991) Primary structure of a cerulenin-binding beta-ketoacyl-[acyl carrier protein] synthase from barley chloroplasts. PNAS 88(10):4114–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, Blanco AD, Dubcovsky J, Uauy C (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet 129:1099–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slafer GA, Elia M, Savin R, García GA, Terrile II, Ferrante A, Miralles DJ, González FG (2015) Fruiting efficiency: an alternative trait to further rise wheat yield. Food Energy Secur 4:92–109

    Article  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17:91–101

    Article  CAS  PubMed  Google Scholar 

  • Tanio M, Kato KJ (2007) Development of near-isogenic lines for photoperiod-insensitive genes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development. Breeding Sci 57:165–172

    Article  Google Scholar 

  • Tranquilli G, Dubcovsky J (2000) Epistatic interaction between vernalization genes Vrn-Am 1 and Vrn-Am2 in diploid wheat. J Hered 91:304–306

    Article  CAS  PubMed  Google Scholar 

  • Van OJ (2006) JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Niu JS, Li QY, Qin Z, Ni YJ, Xu HX (2015) Allelic variance at the vernalization gene locus Vrn-D1 in a group of sister wheat (Triticum aestivum) lines and its effects on development. J Agric Sci 153:588–601

    Article  CAS  Google Scholar 

  • Wang X, Dong L, Hu J, Pang Y, Hu L, Xiao G, Ma X, Kong X, Jia J, Wang H, Kong L (2019) Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping. Theor Appl Genet 132:3115–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolde GM, Mascher M, Schnurbusch T (2019) Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Mol Genet Genomics 294:457–468

    Article  CAS  PubMed  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovíc S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100:385–394

    Article  CAS  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE (2005) A QTL for early heading in wheat cultivar Suwon 92. Euphytica 146:233–237

    Article  CAS  Google Scholar 

  • Xu XT, Zhu ZW, Jia AL, Wang FJ, Wang JP, Zhang YL, Fu C, Fu LP, Bai GH, Xia XC, Hao YF, He ZH (2020) Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica 216:3

    Article  CAS  Google Scholar 

  • Xu HW, Zhang RQ, Wang MM, Li LH, Yan L, Wang Z, Zhu J, Chen XY, Zhao AJ, Su ZQ, Xing JW, Sun QX, Ni ZF (2022) Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theor Appl Genet 135:389–403

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. PNAS 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhang X, Gao M, Wang S, Feng C, Cui D (2015) Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci 6:470

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet 131:1741–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang PP, Guo CJ, Liu Z, Bernardo A, Ma HX, Jiang P, Song GC, Bai G (2020) Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. Crop J 9:143–153

    Article  Google Scholar 

  • Zhou YP, Conway BJ, Miller D, Marshall D, Cooper A, Murphy P, Chao SM, Brown-Guedira G, Costa J (2017) Quantitative trait loci mapping for spike characteristics in hexaploid wheat. Plant Genome 10:2. https://doi.org/10.3835/plantgenome2016.10.0101

    Article  CAS  Google Scholar 

  • Zhu ZW, Hao YF, Mergoum M, Bai GH, Humphreys G, Cloutier S, Xia XC, He ZH (2019) Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J 7:730–738

    Article  Google Scholar 

  • Zhu ZW, Xu XT, Fu LP, Wang FJ, Dong YC, Fang ZW, Wang W, Chen YP, Gao CB, He ZH, Xia XC, Hao YF (2021) Molecular mapping of quantitative trait loci for Fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Dis 105:1339–1345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (31901544, 32071999), the National Key Research and Development Program of Jiangsu (BE2021335), the Seed Industry Revitalization Project of Jiangsu Province (JBGS2021047, JBGS2021006), and the Scientific research special fund of Lixiahe Institute of Agricultural Sciences (SJ(21)101).

Author information

Authors and Affiliations

Authors

Contributions

JZJ, and WGX proposed the project concept. WJH carried out the experiments and wrote the paper. WJH, DMZ, YZ, and SL assisted in performing the experiments and participated in the field trials. WJH, JL, and DZ participated in the data collection. All authors read and approved the final manuscript and its publication.

Corresponding authors

Correspondence to Wenjing Hu or Weigang Xu.

Ethics declarations

Ethics approval and consent to participate (human ethics, animal ethics or plant ethics)

Not applicable.

Consent for publication

All authors give their consent to publish.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Zhu, D., Zhang, Y. et al. Quantitative trait loci mapping for heading date and spikelet number in wheat (Triticum aestivum L.)based on two recombinant inbred line populations. Genet Resour Crop Evol 70, 1179–1195 (2023). https://doi.org/10.1007/s10722-022-01496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01496-2

Keywords

Navigation