Skip to main content

Advertisement

Log in

Vernalization gene combination to maximize grain yield in bread wheat (Triticum aestivum L.) in diverse environments

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The major vernalisation genes of VRN1 are well understood at the molecular level. However, their quantitative contributions to flowering time and grain yield related traits are not clear. In this study, we used a double haploid population (225 lines) of Westonia × Kauz in which the Vrn-A1a (Westonia), Vrn-B1a (Westonia) and Vrn-D1a (Kauz) were segregating, and a high resolution genetic map of 1,159 loci, to determine the quantitative contributions of Vrn-A1a, Vrn-B1a and Vrn-D1a for the days to anthesis and grain yield related traits in diverse environments. The major quantitative trait loci (QTL) of spikelet number per spike and days to anthesis were contributed by the winter alleles of VRN1. The QTL of the time of grain filling were contributed by the spring alleles of VRN1. The wild genotype (vrn-A1vrn-B1vrn-D1) showed the latest flowering, the highest spikelet number per spike, lowest peduncle proportion and thousand grain weight in three environmental analyses, and the largest spikelet number per spike, which resulted in high kernel number per spike (KN) and grain weight (GW) in well-watered environments. One QTL of KN was located on 5B, contributed by winter allele of vrn-B1 in three environmental analyses, and one GW QTL was detected on 5A, contributed by the spring allele of Vrn-A1a in a drought environment. The results indicated that the genotype Vrn-A1avrn-B1Vrn-D1a would shorten the time to anthesis and give high GW and KN in drought environments. The early anthesis associated phenotype, peduncle proportion would provide an indicator in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DH:

Double haploid

GW:

Grain weight per spike

KN:

Kernel number per spike

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

SSR:

Microsatellite molecular markers

TGW:

Thousand grain weight

References

  • Acevedo E, Silva P, Silva H (2002) Wheat growth and physiology. Bread wheat improvement and production, vol 30., FAO Plant Production and Protection SeriesFood and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Allard V, Veisz O, Kõszegi Bl, Rousset M, Le Gouis J, Martre P (2012) The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. J Exp Bot 63(2):847–857. doi:10.1093/jxb/err316

    Article  CAS  PubMed  Google Scholar 

  • Baenziger PS, Budak H, Campbell BT, Erayman M, Eskridge KM, Gill KS, Streck NA, Weiss A (2004) Using environmental covariates to explain genotype x environment and QTL x environment interactions for agronomic traits on chromosome 3A of wheat. Crop Sci 44:620–627

    Google Scholar 

  • Barrett B, Bayram M, Kidwell K, Weber WE (2002) Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed 121(5):400–406. doi:10.1046/j.1439-0523.2002.732319.x

    Article  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape J, Laurie D (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115(5):721–733. doi:10.1007/s00122-007-0603-4

    Article  CAS  PubMed  Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62(10):3621–3636. doi:10.1093/jxb/err061

    Article  CAS  PubMed  Google Scholar 

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116(3):383–394. doi:10.1007/s00122-007-0676-0

    Article  CAS  PubMed  Google Scholar 

  • Butler JD, Byrne PF, Mohammadi V, Chapman PL, Haley SD (2005) Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels. Crop Sci 45:939–947

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) Plymouth Routines In Multivariate Ecological Research. PRIMER-E, v6 edn. PRIMER-E Ltd, United Kingdom

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58(6):1231–1244. doi:10.1093/jxb/erm042

    Article  CAS  PubMed  Google Scholar 

  • Conocono EA (2002) Improving yield of wheat experiencing post-anthesis water deficits through the use of shoot carbohydrate reserves. PhD thesis, University of Western Australia, Perth

  • Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186(1):177–192. doi:10.1007/s10681-011-0550-7

    Article  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12(2):178–184

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97(5):968–975. doi:10.1007/s001220050978

    Article  CAS  Google Scholar 

  • Fischer RA, Rajaram S, Sayre KD (1997) Yield potential progress in short bread wheats in northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner J, von Zitzewitz J, Hayes P, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273(1):54–65. doi:10.1007/s00438-004-1095-4

    Article  CAS  PubMed  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Hoogendoorn J (1985) A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34(2):545–558. doi:10.1007/bf00022954

    Article  Google Scholar 

  • Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113(4):753–766. doi:10.1007/s00122-006-0346-7

    Article  CAS  PubMed  Google Scholar 

  • Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104(4):571–576. doi:10.1007/s00122-001-0769-0

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101(7):1114–1121. doi:10.1007/s001220051587

    Article  CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in breed wheat I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity 36:49–58

    Article  Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138(4):2364–2373. doi:10.1104/pp.105.064287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12(12):930–932. doi:10.1007/s00335-001-1016-3

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × AC Domain. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112(5):787–796. doi:10.1007/s00122-005-0159-0

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141(2):721–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100(5):2489–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinesis Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880. doi:10.1007/s00122-004-1902-7

    Article  CAS  PubMed  Google Scholar 

  • Rawson H (1970) Spikelet number, its control and relation to yield per ear in wheat. Aust J Biol Sci 23(1):1–16. doi:10.1071/BI9700001

    Google Scholar 

  • Scarth R, Law CN (1983) The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear-emergence time on chromosome 2B of wheat. Heredity 51(3):607–619

    Article  Google Scholar 

  • Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170

    Article  CAS  PubMed  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114. doi:10.1007/s00122-004-1740-7

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17(2):91–101. doi:10.1016/j.tplants.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  • Stelmakh AF (1992) Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica 65(1):53–60. doi:10.1007/bf00022199

    Article  Google Scholar 

  • Trevaskis B (2010) The central role of the VERNALIZATION1 gene in the vernalization response of cereals. FPB 37(6):479–487. doi:10.1071/FP10056

    CAS  Google Scholar 

  • Turner A, Beales J, Faure Sb, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034. doi:10.1126/science.1117619

    Article  CAS  PubMed  Google Scholar 

  • van Beem J, Mohler V, Lukman R, van Ginkel M, William M, Crossa J, Worland AJ (2005) Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci 45(5):2113–2119. doi:10.2135/cropsci2004.0665

    Article  Google Scholar 

  • van-Os H, Visser RGF, van-Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  Google Scholar 

  • Worland AJ, Börner A, Korzun V, Li WM, Petrovíc S, Sayers EJ (1998) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100(1–3):385–394. doi:10.1023/A:1018327700985

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268. doi:10.1073/pnas.0937399100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109(8):1677–1686. doi:10.1007/s00122-004-1796-4

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103(51):19581–19586. doi:10.1073/pnas.0607142103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams R (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723

    Article  PubMed  Google Scholar 

  • Zhang J, Huang S, Fosu-Nyarko J, Dell B, McNeil M, Waters I, Moolhuijzen P, Conocono E, Appels R (2008) The genome structure of the 1-FEH genes in wheat (Triticum aestivum L.): new markers to track stem carbohydrates and grain filling QTLs in breeding. Mol Breed 22(3):339–351. doi:10.1007/s11032-008-9179-1

    Article  CAS  Google Scholar 

  • Zhang J, Dell B, Conocono E, Waters I, Setter T, Appels R (2009) Water deficits in wheat: fructosyl exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 181:843–850

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R (2013) Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breed 32(4):771–783. doi:10.1007/s11032-013-9905-1

    Article  Google Scholar 

  • Zheng B, Le Gouis J, Leflon M, Rong W, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121(8):1501–1517. doi:10.1007/s00122-010-1406-6

    Article  PubMed  Google Scholar 

  • Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J Exp Bot 64(12):3747–3761. doi:10.1093/jxb/ert209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Murdoch University and Grain Research & Development Corporation ‘grant number UMU00039’. The authors acknowledge Ruilian Jing, Wei Shi, Xianshan Hu (Chinese Academy of Agricultural Science, China), and Jun Zhu (Zhe Jiang University) for the help on QTL analysis and checking the mapping data. The authors are very grateful to Irene Waters and Tim Setter (the Department of Agricultural and Food, Western Australia) for providing the Westonia and Kauz double haploid lines and Mehmet Cakir for providing 199 polymorphic SSR marker names.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjuan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dell, B., Biddulph, B. et al. Vernalization gene combination to maximize grain yield in bread wheat (Triticum aestivum L.) in diverse environments. Euphytica 198, 439–454 (2014). https://doi.org/10.1007/s10681-014-1120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1120-6

Keywords

Navigation