Skip to main content

Advertisement

Log in

Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cyanobacteria - phytopathogenic fungi - tomato plant interactions were evaluated for developing suitable biological options for combating biotic stress (Fusarium wilt) and enhancing plant vigour. Preliminary evaluation was undertaken on the fungicidal and hydrolytic enzyme activity of the cyanobacterial strains (Anabaena variabilis RPAN59, A. laxa RPAN8) under optimized environmental/nutritional conditions, followed by amendment in compost-vermiculite. Such formulations were tested against Fusarium wilt challenged tomato plants, and the Anabaena spp. (RPAN59/8) amended composts significantly reduced mortality in fungi challenged treatments, besides fungal load in soil. Cyanobacteria amended composts also led to an enhancement in soil organic C, nitrogen fixation, besides significant improvement in growth, yield, fruit quality parameters, N, P and Zn content. The tripartite interactions also enhanced the activity of defence and pathogenesis related enzymes in tomato plants. A positive correlation (r = 0.729 to 0.828) between P content and pathogenesis/defense enzyme activity revealed their role in enhancing the resistance of the plant through improved nutrient uptake. Light and scanning electron microscopy (SEM) revealed cyanobacterial colonization, which positively correlated with reduced fungal populations. The reduced disease severity coupled with improved plant growth/ yields, elicited by cyanobacterial treatments, illustrated the utility of such novel formulations in integrated pest and nutrient management strategies for Fusarium wilt challenged tomato crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adesemoye, A., Torbert, H., & Kloepper, J. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, M., Stal, L. J., & Hasnain, S. (2011). DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). Journal of Industrial Microbiology and Biotechnology, 38, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Benhamou, N., Belanger, R. R., & Paulitz, T. C. (1996). Induction of differential host responses by Pseudomonas fluorescens in Ri T-DNA-transformed pea roots after challenged with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology, 86, 114–118.

    Google Scholar 

  • Bozzola, J. J. & Russell, L. D. (1998). Electron microscopy: Principles and techniques for biologists. Jones and Bartlett Publishers.

  • Bramhall, R. A., & Higgins, V. J. (1988). The effect of glyphosate on resistance of tomato to Fusarium crown and root rot disease and on the formation of host structural defensive barriers. Canadian Journal of Botany, 66, 1547–1555.

    Article  Google Scholar 

  • Chaudhary, V., Prasanna, R., & Bhatnagar, A. K. (2012a). Modulation of fungicidal potential of Anabaena strains by light and temperature. Folia Microbiologica, 57, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary, V., Prasanna, R., & Bhatnagar, A. K. (2012b). Influence of phosphorus and pH on the fungicidal potential of Anabaena strains. Journal of Basic Microbiology. doi:10.1002/jobm.201100520. Published online: 26 June 2012.

  • Chen, C., Belanger, R. R., Benhamaou, N., & Paulitz, T. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13–23.

    Article  CAS  Google Scholar 

  • Christopher, D. J., Raj, T. S., Rani, S. U., & Udhayakumar, R. (2010). Role of defense enzymes activity in tomato as induced by Trichoderma virence against Fusarium wilt caused by Fusarium oxysporum f sp. lycopersici. Journal of Biopesticides, 3, 158–162.

    Google Scholar 

  • Commonwealth Agricultural Bureaux. (1968). Plant pathologist’s pocketbook (p. 239). Kew: Commonwealth Mycological Institute.

    Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  PubMed  CAS  Google Scholar 

  • Dukare, A. S. (2010). Evaluation of disease suppressiveness of microbe amended compost(s) against soil borne pathogens of tomato. M. Sc. thesis, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India.

  • Dukare, A. S., Prasanna, R., Dubey, S. C., Nain, L., Chaudhary, V., Singh, R., & Saxena, A. K. (2011). Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protection, 30, 436–442.

    Article  Google Scholar 

  • Fish, W. W., Perkins-Veazie, P., & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food and Computational Analysis, 15, 309–317.

    Article  CAS  Google Scholar 

  • Fridlender, M., Inbar, J., & Chet, I. (1993). Biological control of soil borne plant pathogens by a β-1, 3 glucanase producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25, 1211–1221.

    Article  CAS  Google Scholar 

  • Ghosh, T. K., Bailey, H. J., Bisaria, V. S., & Enari, T. M. (1983). Measurement of cellulase activities. Final recommendations, Commission of Biotechnology. International Union of Pure and Applied Chemistry, 59, 1–13.

    Google Scholar 

  • Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganism. African Journal of Biotechnology, 5, 54–72.

    Google Scholar 

  • Gotz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, M. H. L., & Smalla, K. (2006). Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56, 207–218.

    Article  PubMed  Google Scholar 

  • Gupta, V., Prasanna, R., Natarajan, C., Srivastava, A. K., & Sharma, J. (2010). Identification, characterization and regulation of a novel antifungal chitosanase gene (cho) in Anabaena sp. Applied and Environmental Microbiology, 76, 2769–2777.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, V., Natarajan, C., Kumar, K., & Prasanna, R. (2011). Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa. Journal of Applied Phycology, 23, 73–81.

    Article  CAS  Google Scholar 

  • Hariprasad, P., Divakara, S. T., & Niranjana, S. R. (2011). Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Protection, 30, 1606–1612.

    Article  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species- opportunistic, avirulent plant symbionts. Nature Reviews, 2, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M., & Bostock, R. M. (2002). Induced Systemic Resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany, 89, 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Hesse, P. R. (1971). A textbook of soil chemical analysis. London, England: John Murray.

    Google Scholar 

  • Hofte, M., & Altier, N. (2010). Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology, 161, 464–471.

    Article  PubMed  Google Scholar 

  • Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24, 93–114.

    Article  Google Scholar 

  • Jaiswal, P., Prasanna, R., Nayak, S., Sood, A., & Suseela, M. R. (2008). Characterization of rhizo-cyanobacteria and their associations with wheat seedlings. Egyptian Journal of Biology, 10, 20–27.

    Google Scholar 

  • Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth promoting bacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24, 285–291.

    Article  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Lata, & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30.

    Article  CAS  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. D. (2009). Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Kaushik, B. D. (1987). Laboratory methods for Blue-Green algae (p. 171). New Delhi: Assoc. Publ. Co.

    Google Scholar 

  • Kavitha, R., & Umesha, S. (2008). Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica, 36, 144–159.

    Article  CAS  Google Scholar 

  • Kerkeni, A., Daami-Remadi, M., Tarchoun, N., & Khedher, M. B. (2007). In vitro and in vivo suppression of Fusarium oxysporum f. sp. radicis-lycopersici the causal agent of Fusarium crown and root rot of tomato by some compost fungi. International Journal of Agricultural Research, 2, 1022–1029.

    Article  Google Scholar 

  • Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., & Ryals, J. (1994). lnduction of systemic acquired resistance in plants by chemicals. Annual Reviews of Phytopathology, 32, 439–459.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Schippers, B., & Bakker, P. A. H. M. (1992). Proposed elimination of the term endorhizosphere. Phytopathology, 82, 726–727.

    Google Scholar 

  • Kucey, R. M. N., Janzen, H. H., & Leggett, M. E. (1989). Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, 42, 199–228.

    Article  CAS  Google Scholar 

  • Kulik, M. M. (1995). The potential for using cyanobacteria (blue green algae) and algae in the biological control of plant pathogenic bacteria and fungi. European Journal of Plant Pathology, 101, 585–599.

    Article  Google Scholar 

  • Ling, N., Huang, Q., Guo, S., & Shen, Q. (2011). Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant and Soil, 341, 485–493.

    Article  CAS  Google Scholar 

  • MacKinney, G. (1941). Absorption of light by chlorophyll solutions. Journal of Biology and Chemistry, 140, 315–322.

    CAS  Google Scholar 

  • Mader, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H. S., Sharma, A. K., Srivastava, R., Sahai, V., Aragno, M., Wiemken, A., Johri, B. N., & Fried, P. M. (2011). Inoculation of root microorganisms for sustainable wheat rice and wheat black gram rotations in India. Soil Biology and Biochemistry, 43, 609–619.

    Article  CAS  Google Scholar 

  • Mandal, B., Vlek, P. L. G. & Mandal, L. N. (1999). Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biology and Fertility of Soils, 28, 329–342

    Google Scholar 

  • Manjunath, M., Prasanna, R., Nain, L., Dureja, P., Singh, R., Kumar, A., Jaggi, S., & Kaushik, B. D. (2010). Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Archives of Phytopathology and Plant Protection, 43, 666–677.

    Article  Google Scholar 

  • Nain, L., Rana, A., Joshi, M., Jadhav, S. D., Kumar, D., Shivay, Y. S., Paul, S., & Prasanna, R. (2010). Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant and Soil, 331, 217–230.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

    Article  Google Scholar 

  • Natarajan, C., Prasanna, R., Gupta, V., Dureja, P., & Lata. (2012). Dissecting the fungicidal activity of Calothrix elenkinii using chemical analyses and microscopy. Applied Biochemistry and Microbiology, 48, 53–57.

    Article  Google Scholar 

  • Nayak, S., Prasanna, R., Pabby, A., Dominic, T. K., & Singh, P. K. (2004). Effect of urea and BGA- Azolla biofertilizers on nitrogen and chlorophyll accumulation in soil cores from rice fields. Biology and Fertility of Soils, 40, 67–72.

    Article  CAS  Google Scholar 

  • Ohtakara, A. (1988). Chitosanase and β-N-acetyl hexosamine from Pycnosporus cinnabarinus. Methods in Enzymology, 168, 464–468.

    Google Scholar 

  • Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H., & Gheda, S. F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46, 861–875.

    Article  Google Scholar 

  • Pandey, V. N., & Dubey, N. K. (1994). Antifungal potential of leaves and essential oils from higher plants against soil phytopathogens. Soil Biology and Biochemistry, 26, 1417–1421.

    Article  Google Scholar 

  • Paulitz, T. C., & Schroeder, K. L. (2005). A new method for the quantification of Rhizoctonia solani and Rhizoctonia oryzae from soil. Plant Disease, 89, 767–772.

    Article  Google Scholar 

  • Pozo, M. J., Azcon-Aguilar, C., Dumas-Gaudot, E., & Barea, J. M. (1999). β-1, 3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 141, 149–157.

    Article  CAS  Google Scholar 

  • Prasad, R., Shivay, Y. S., Kumar, D., & Sharma, S. N. (2006). Learning by doing exercises in soil fertility (a practical manual for soil fertility) (p. 68). New Delhi: Division of Agronomy, Indian Agricultural Research Institute.

    Google Scholar 

  • Prasanna, R., Tripathi, U., Dominic, T. K., Singh, A. K., Yadav, A. K., & Singh, P. K. (2003). An improvised technique for measurement of nitrogen fixation by blue-green algae and Azolla using intact soil cores. Experimental Agriculture, 39, 145–150.

    Article  CAS  Google Scholar 

  • Prasanna, R., Jaiswal, P., Singh, Y. V., & Singh, P. K. (2008a). Influence of biofertilizers and organic amendments on nitrogenase activity and phototrophic biomass of soil under wheat. Acta Agronomica Hungarica, 56, 149–159.

    Article  CAS  Google Scholar 

  • Prasanna, R., Lata, Tripathi, R., Gupta, V., Middha, S., Joshi, M., Ancha, R., & Kaushik, B. D. (2008b). Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria - possible role of hydrolytic enzymes. Journal of Basic Microbiology, 48, 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Prasanna, R., Jaiswal, P., Nayak, S., Sood, A., & Kaushik, B. D. (2009a). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Industrial Journal of Microbiology, 49, 89–97.

    Article  CAS  Google Scholar 

  • Prasanna, R., Nain, L., Ancha, R., Shrikrishna, J., Joshi, M., & Kaushik, B. D. (2009b). Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egyptian Journal of Biology, 11, 26–36.

    Google Scholar 

  • Prasanna, R., Gupta, V., Natarajan, C., & Chaudhary, V. (2010a). Allele mining for chitosanases and microcystin-like compounds in Anabaena strains. World Journal of Microbiology and Biotechnology, 26, 717–724.

    Article  CAS  Google Scholar 

  • Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., Gupta, V., Chaudhary, V., Joshi, M., & Natarajan, C. (2010b). Rediscovering cyanobacteria as valuable sources of bioactive compounds. Applied Biochemistry and Microbiology, 46, 133–147.

    Article  CAS  Google Scholar 

  • Prasanna, R., Singh, R. N., Joshi, M., Madhan, K., Pal, R. K., & Lata. (2011). Monitoring the biofertilizing potential and establishment of inoculated cyanobacteria in soil using physiological and molecular markers. Journal of Applied Phycology, 23, 301–308.

    Article  CAS  Google Scholar 

  • Prasanna, R., Joshi, M., Rana, A., Shivay, Y. S., & Nain, L. (2012). Influence of co-inoculation of bacteria- cyanobacteria on crop yield and C- N sequestration in soil under rice crop. World Journal of Microbiology and Biotechnology (Online First™, 31 October 2011).

  • Radhakrishnan, B., Prasanna, R., Jaiswal, P., Nayak, S., & Dureja, P. (2009). Modulation of biocidal activity of Calothrix sp. and Anabaena sp. by environmental factors. Biologia, 64, 881–889.

    Article  Google Scholar 

  • Rai, A. N., & Bergman, B. (2002). Creation of new nitrogen-fixing cyanobacteria associations. Proceedings of the Royal Irish Academy, 102B, 65–68. Suppl. Issue - Biology and Environment.

    Article  Google Scholar 

  • Ramamoorthy, V., Raguchander, T., & Samiyappan, R. (2002). Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant and Soil, 239, 55–68.

    Article  CAS  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118–126.

    Article  CAS  Google Scholar 

  • Rastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnological Advances, 27, 521–539.

    Article  CAS  Google Scholar 

  • Roger, P. A., Zimmerman, W. J., & Lumpkin, T. (1993). Microbiolgical management of wetland rice fields. In B. Metting (Ed.), Soil microbial ecology (pp. 417–455). New York: M. Dekker.

    Google Scholar 

  • Ross, W. W., & Sederoff, R. R. (1992). Phenylalanine ammonia lyase from loblolly Pine: purification of the enzyme and isolation of complementary DNA clone. Plant Physiology, 98, 380–386.

    Article  Google Scholar 

  • Sergeeva, E., Liaimer, A., & Bergman, B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta, 215, 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandal, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue green algae (order: Chroococcales). Bacteriological Reviews, 35, 171–305.

    PubMed  CAS  Google Scholar 

  • Tassara, C., Zaccaro, C. M., Storni, M. M., Palma, M., & Zulpa, G. (2008). Biological control of lettuce white mold with cyanobacteria. International Journal of Agriculture and Biology, 10, 487–492.

    Google Scholar 

  • Venkataraman, G. S. (1981). Blue green algae: a possible remedy to nitrogen scarcity. Current Science, 50, 253–256.

    Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Indian Council of Agricultural Research (ICAR)-AMAAS Network Project on Microorganisms, New Delhi, India. We are grateful to the authorities of the Division of Microbiology, IARI, New Delhi, for providing facilities for this study. We also thank Dr. V.V. Ramamurthy and the project staff of the Network Project on Insect Biosystematics in the Division of Entomology, IARI, for assistance in the scanning electron microscopy analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(a) Experimental set up for evaluating the formulations in tomato crop (b) Effect of cyanobacteria untreated/treated seedlings on leaf morphology of tomato seedlings (JPEG 83 kb)

High resolution image (TIFF 998 kb)

Supplementary Fig. 2

Effect of different treatments on growth of tomato plants (left-right) fungi challenged control treatment and RPAN50amended compost treated plants (JPEG 1967 kb)

High resolution image (TIFF 18610 kb)

Supplementary Fig. 3

Effect of different treatments on number of fruits per plant. The treatments include RPAN8C-T1; RPAN8O-T2; RPAN59C-T3; RPAN59O-T4; RPAN16C-T5; Bacillus subtilis-T6; Chemical (Thiram + Carbendazim)-T7; Trichoderma sp.-T8; Control-T9 (JPEG 100 kb)

High resolution image (EPS 115 kb)

ESM 4

(DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, R., Chaudhary, V., Gupta, V. et al. Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136, 337–353 (2013). https://doi.org/10.1007/s10658-013-0167-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0167-x

Keywords

Navigation