Skip to main content

Advertisement

Log in

Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Two cyanobacterial species (Nostoc entophytum and Oscillatoria angustissima) were tested as biofertilizers, substituting the normally used chemical fertilizer, for pea plant. Inoculation of soil with a suspension of each species or a combination of the two species significantly increased the germination percentage and stimulated the other measured growth parameters and photosynthetic pigment fractions of pea. However, the soil inoculation with one cyanobacterial species and the addition of the recommended dose or half the recommended dose of chemical fertilizer were usually more effective and also increased carbohydrate and protein contents of produced pea seeds. However, biofertilization combined with half the recommended dose of the chemical fertilizer was usually more effective than the addition of the full rate of the chemical fertilizer, and this may allow saving 50% of the used chemical fertilizer. The protein profile of the produced seeds showed appearance and disappearance of some protein bands in response to fertilization treatments compared to the control. Blue green algae analyses show that N. entophytum fixed more N, produced more exopolysaccharide, and contained more auxin and cytokinin than O. angustissima, the latter contained more gibberellins. These data may explain their different influences on growth and yield of pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd-Allah MH, Mahmoud ALE, Issa AA (1994) Cyanobacterial biofertilizers improved growth of wheat. Phyton 34:11–18, Horn

    Google Scholar 

  • Adam MS (1999) The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol Pol 48:163–171

    CAS  Google Scholar 

  • Allen MM, Stanier ST (1968) Selective isolation of blue green algae from water and soil. J Gen Microbiol 51:203

    PubMed  CAS  Google Scholar 

  • Allen SE, Grinshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford, p 565

    Google Scholar 

  • Asari N, Ishihara R, Nakajima Y, Kimura M, Asakawa S (2008) Cyanobacterial communities of rice straw left on the soil surface of a paddy field. Biol Fertil Soils 44:605–612

    Article  CAS  Google Scholar 

  • Bobade KP, Kolte SO, Patil BG (1992) Affectivity of cyanobacterial technology for transplanted rice. Phykos 31:33–35

    Google Scholar 

  • Bograh A, Gingras Y, Tajmir R, Carpentier R (1997) The effects of spermine and spermidine on the structure of photosystem II proteins in relation to inhibition of electron transport. FEBS Lett 402:41–44

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilization the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:64–72

    Article  Google Scholar 

  • Choudhury S, Gupta K (1998) Studies on the germination mechanism of Catharanthus roseus (L.) G. Do NCV. Alba seeds effect of promoters and pH-Seed. Sci Technol 26:719–732

    Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Davies PJ (1995) Plant hormones. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 192

    Google Scholar 

  • De Caire GZ, De Cano MS, De Mule MCZ, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

  • De Caire GZ, De Cano MS, Palma RM, De Mule MCZ (2000) Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem 32:1985–1987

    Article  Google Scholar 

  • De Cano MS, De Mule MCZ, De Caire GZ, De Halperin DR (1993) Biofertilization of rice plants with the cyanobacterium Tolypothrix tenuis (40d). Phyton B Aires 54:149–155

    Google Scholar 

  • De Cano SM, De Mule ZMC, De Caire ZG, Palma RM, Colombo K (1997) Aggregation of soil particles by Nostoc muscorum (Cyanobacteria). Int J Exp Bot 57:35–40, phyton

    Google Scholar 

  • De Cano MMS, De Caire GZ, De Mulé MCZ, Palma RM (2002) Effect of Tolypothrix tenuis and Microchaete tenera on biochemical soil properties and maize growth. J Plant Nutr 25:2421–2431

    Article  CAS  Google Scholar 

  • Drazkiewicz M (1994) Chlorophyllase: occurrence, functions, mechanism of action, effect of external and internal factors. Phytosynthetica 30:321–331

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars and related substances. Am Chem Soc 23:351–359

    Google Scholar 

  • Featonby-Smith BC, Van Staden J (1983) The effect of seaweed concentrate and fertilizer on the growth of Beta vulgaris. Zpflanzenphysiol 112:155–162

    Google Scholar 

  • Halder AK, Mishra AK, Chakrabarty PK (1991) Solubilization of inorganic phosphates by Bradyrhizobium. Indian J Exp Biol 29:28–31

    CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–48

    Article  CAS  Google Scholar 

  • Haroun SA, Hussein MH (2003) The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian J Plant Sci 2:944–951

    Article  Google Scholar 

  • Jha MN, Prasad AN (2006) Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World J Microbiol Biotechnol 22:73–79

    Article  CAS  Google Scholar 

  • Jones HG, Davies WJ (1991) A perspective on ABA research in the 1990s. In: Davies WJ, Jones HG (eds) Abscisic acid, physiology and biochemistry. Bios. Scientific Publishers, Oxford, pp 1–4

    Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Euro J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • King J (1991) The genetic basis of plant physiological processes. Oxford University Press, Oxford, p 413

    Google Scholar 

  • Kowolczyck M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845–1853

    Article  CAS  Google Scholar 

  • Kulhlbusch TA, Lobert JM, Crutzen PJ, Warneck P (1991) Molecular nitrogen emission. Trace nitrification during biomass burning. Nature 351:135–137

    Article  Google Scholar 

  • Kumar V, Basra AS, Malik CB (1987) Enzymes of nonphotosynthetic C4-dicarboxylic acid metabolism in germinating grains of wheat. Biochem Physiol Pflazen 182:261–262

    CAS  Google Scholar 

  • Laemmili UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lee YP, Takahashi T (1966) An improved colorimeteric determination of amino acids with the use of nin hydrin. Anal Biochem 14:71–75

    Article  CAS  Google Scholar 

  • Likhitkar VS, Tarar JL (1995) Effect of presoaking seed treatment with Nostoc muscorum extracts on cotton. Ann Plant Physiol 9:113–116

    Google Scholar 

  • Lozano MS, Verde Star J, Maiti RK, Oranday CA, Gaona RH, Aranda HE, Rojas GM (1999) Effect of an algal extract and several plant growth regulators on the nutritive value of potatoes (Solanum tuberosum L. var. gigant). Arch Latinoam Nutr 49:166–170

    CAS  Google Scholar 

  • Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D'Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D'Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Mckinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Untersuchunger, zur synchronisierbarkei einzelner pigmentmangel mutanten von Chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Mishra U, Pabbi S (2004) Cyanobacteria: a potential biofertilizer for rice. Resonance 9:6–10

    Article  Google Scholar 

  • Mohiuddin M, Das AK, Ghosh DC (2000) Growth and productivity of wheat as influenced by integrated use of chemical fertilizer, biofertilizer and growth regulator. Indian J Plant Physiol 5:334–338

    Google Scholar 

  • Nelson N (1944) Aphotometric adaptation of somagi method for the determination of glucose. J Biol Chem 153:275

    Google Scholar 

  • Nilsson M, Bhattacharya J, Rai AN, Bergman B (2002) Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol 156:517–525

    Article  Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Obana S, Miyamoto K, Morita S, Ohmori M, Inubushi K (2007) Effect of Nostoc sp. On soil characteristics, plant growth and nutrient up take. J Appl Phycol 19:641–646

    Article  Google Scholar 

  • Obreht Z, Nw K, Gantar M, Rowell P (1993) Effects of root associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    Article  CAS  Google Scholar 

  • Okalo BN, Ezeogu LI, Ebisike CO (1996) Raw starch digesting amylase from Thermoactinomyces thalophilus F13. World J Microbiol Biotechnol 12:637–638

    Article  Google Scholar 

  • Ördög V (1999) Beneficial effects of microalgae and cyanobacteria in plant/soil system with special regard to their auxin and cytokinin-like activity. International workshop and training course on microalgal biology and biotechnology, Mosonmagyaróvár, Hungary, June 13–26, UNESCO (International Cell Research Organization), pp 43–44

  • Pandey KD, Shukla PN, Giri DD, Kashyap AK (2005) Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biol Fertil Soils 41:451–457

    Article  Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21:135–144

    Article  Google Scholar 

  • Periminova GN (1972) Methods of study and practical use of soil algae. Report Kirov & Agric Inst Kirov, p 221 (In Russian)

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14:211–218

    Article  CAS  Google Scholar 

  • Prasad BK, Kumar M, Kumar R, Kumar SK, Kumar V, Diwakar AP, Singh KR, Prasad U (2000) Effect of domestic wastes on the germination of maize and cowpea seeds. J Phytol Res 13:191–194

    Google Scholar 

  • Prescott GW (1962) Algae of western great lakes area. Wm. C. Brown, Dubuque, IA

    Google Scholar 

  • Prescott GW (1970) How to know the fresh water algae. Wm. C. Brown, Dubuque, IA

    Google Scholar 

  • Roger PA, Santiago-Ardales S, Watanabe I (1986) Nitrogen fixing blue-green algae in rice soils of northern Luzon (Philippines). Phil Agr 69:589–598

    Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations and seedlings emergence following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Article  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Google Scholar 

  • Sapatnekar HG, Rasal PH, Patil PL (2001) Effects of N2-fixers along with inorganic fertilizers on paddy yield. J Maharashtra Agr Univ 26:118–119

    Google Scholar 

  • Saswati-Nayak R-P, Pabby A, Dominic TK, Singh PK (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soils 40:67–72

    Article  CAS  Google Scholar 

  • Serdyuk OP, Smolygina LP, Kobzar EV, Gogotov IN (1992) Phytohormones formed by the nitrogen fixing association of Anabaena–Azollae. Doklady Biochem 325:149–151

    Google Scholar 

  • Sinha RP, Kumar A (1992) Screening of blue-green algae for biofertilizer. In: Patil, P. S (ed) Proceedings of the national seminar on organic farming, Pune, India, pp 95–97

  • Sinha SK, Verma DC, Dwivedi CP (2002) Role of green manure (Sesbania rostrata) and biofertilizers (Blue-green algae and Azotobactor) in rice-wheat cropping system in state of Uttar Pradesh, India. Physiol Mol Biol Plants 8:105–110

    Google Scholar 

  • SPSS (2006) SPSS base user's guide 15.0. SPSS, Chicago, p 618

    Google Scholar 

  • Stirk WA, Ördög V, Van Staden J (1999) Identification of cytokinin isopentenyladenine in a strain of Arthronema africanum (cyanobacteria). J Phycol 35:89–92

    Article  CAS  Google Scholar 

  • Stirk WA, Ördög V, Van Staden J, Jäger K (2002) Cytokinin and auxin like activity in cyanophyta and microalgae. J Appl Phycol 14:215–221

    Article  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Häder DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516

    Article  Google Scholar 

  • Van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Lebeboer AM, Verrips CT (1995) Production of a novel extracellular polysaccharide by Lactobacillus Sake-01 and characterization of the polysaccharide. Appl Environ Microbiol 61:2840–2844

    PubMed  Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crop Res 65:165–181

    Article  Google Scholar 

  • Venkataraman GS (1969) The cultivation of algae. Indian Council of Agricultural Research, New Delhi, p 319

    Google Scholar 

  • Wang SM, Wang QL, Li SH, Zhang JR (1991) A study of treatment of spring wheat with growth promoting substances from nitrogen-fixing blue green algae. Acta Hydrob Sin 15:45–52

    Google Scholar 

  • Waters ERI, Lea GJ, Vierling E (1996) Evaluation, structure and function of the small heat shock proteins. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 233–255

    Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol App Pharmacol 203:201–218

    Article  CAS  Google Scholar 

  • Yanni YG (1991) Protection of rice against “rosette long-day” disorder by inoculation with Aulosira fertilissima vs treatment with gibberellic acid. World J Microbiol Biotechnol 7:436–438

    Article  Google Scholar 

  • Younis ME, El-Shahaby OA, Abo-Hamed SA, Haroun SA (1991) Plant growth, metabolism and adaptation in relation to stress conditions. XI. Modification of osmotic-stress-induced metabolic effects by GA3 or IAA in Pisum sativum plants. Acta Agron Hung 40:367–375

    CAS  Google Scholar 

  • Zaccaro MC, De Caire GZ, De Cano MS, Palma RM, Colombo K (1999) Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Comm Soil Sci Plant Anal 30:97–107

    Article  Google Scholar 

  • Zaccaro MC, Salazar C, De Caire GZ, De Cano MS, Stella AM (2001) Lead toxicity in cyanobacterial porphyrin metabolism. Environ Toxicol Water Qual 16:61–67

    CAS  Google Scholar 

  • Zheleva DT, Tsonev T, Sergiev I, Karanov E (1994) Protective effect of exogenous polyamines against atrazine in pea plants. J Plant Growth Regul 13:203–211

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Editor-in-Chief Prof. Paolo Nannipieri and two anonymous reviewers for valuable comments and criticism which significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elanwar H. Osman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H. et al. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46, 861–875 (2010). https://doi.org/10.1007/s00374-010-0491-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-010-0491-7

Keywords

Navigation