Skip to main content
Log in

Bioprospecting for genes involved in the production of chitosanases and microcystin-like compounds in Anabaena strains

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioinformatic tools guided PCR amplification assays were employed for analyzing two Anabaena strains A. laxa and A. iyengarii which exhibited chitosanase activity, allelopathic and fungicidal activity. Sequencing of a 297 bp fragment obtained by amplification with primers directed towards mcy A gene (involved in the production of microcystins), revealed significant similarity with the condensation domain, while amplification with specific primers towards N-methyltransferase (NMT) domain showed 59% similarity with a homologous domain in a toxic strain of Microcystis aeruginosa. An amplified product of 172 bp obtained using specific primers derived from the coding region of chitinase (chi IS) gene in Streptomyces sp., showed 100% similarity with hydrogenbyrinic acid a, c-diamide cobaltochelatase gene in Anabaena, and significant similarity with chi IS gene of Streptomyces sp. under less stringent conditions. The 663 bp sequence obtained by employing specific primers for chitosanase (choA) derived from Mitsuaria chitosanitabida 3001 strain, showed 100% similarity with glycoside hydrolase family three domain like protein(s). This study is a first time report on the presence of homologues of chitosanase in cyanobacteria which can play a role in allelopathic activity exhibited by these oxygenic photosynthetic prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Carmichael WW (1997) The cyanotoxins. Adv Bot Res 27:211–240

    Article  CAS  Google Scholar 

  • Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (cyanobacteria). J Phycol 38:305–308

    Article  Google Scholar 

  • Dittmann E, Borner T (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203:192–200

    Article  CAS  Google Scholar 

  • Frankmolle WP, Larsen LK, Caplan FR, Patterson GML, Knubel G, Moore RE (1992) Antifungal Cyclic Peptides from the terrestrial Blue Green Alga Anabaena laxa. J Antibiot 45(9):1451–1457

    CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a B -1, 3 glucanase producing Psuedomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    CAS  Google Scholar 

  • Hirsch CF, Liesch JM, Salvatore MJ, Schwartz RE, Sesin DF (1990) Antifungal fermentation product and method. US patent 4,946,835

  • Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Borner T (2003) PCR based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410

    Article  CAS  Google Scholar 

  • Jaiswal P, Prasanna R, Singh PK (2005) Isolation and screening of rice field cyanobacteria exhibiting algicidal activity. Asian J Microbiol Biotechnol Environ Sci 7:367–373

    Google Scholar 

  • Jaiswal P, Prasanna R, Singh PK (2008) Cyanobacterial bioactive molecules—an overview of their “cidal” properties. Can J Microbiol 54:701–717

    Article  CAS  Google Scholar 

  • Jones JDG, Grady KL, Suslow TV, Bedbrook JR (1986) Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J 5:467–473

    CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Borner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  CAS  Google Scholar 

  • Kaebernick M, Dittmann E, Borner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial toxin. Appl Environ Microbiol 68:449–455

    Article  CAS  Google Scholar 

  • Kaushik BD (1987) Laboratory methods for blue green algae. Associated Publishing Company, New Delhi

    Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118

    Article  CAS  Google Scholar 

  • Mahakhant A, Padungwong P, Arunpairojana V, Atthasampunna P (1998) Control of the plant pathogenic fungus Macrophomina phaseolina in mung bean by microalgal extract. Phycol Res 46(Suppl 1):3–7

    CAS  Google Scholar 

  • Manjunath M, Prasanna R, Lata Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2009) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Prot (In Press)

  • Nagle DG, Inderjit (2002) The chemistry and chemical ecology of biologically active cyanobacterial metabolites. In: Inderjit MalikAU (ed) Chemical ecology of plants, allelopathy in aquatic and terrestrial ecosystem. Birkhauser Verlag, Switzerland, pp 33–56

    Google Scholar 

  • Nagle DG, Wedge DE (2002) Antifungal properties of cyanobacteria and algae: ecological and agricultural implications. In: Inderjit MalikAU (ed) Chemical ecology of plants, allelopathy in aquatic and terrestrial ecosystem. Birkhauser Verlag, Switzerland, pp 7–32

    Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Indus Microbiol Biotechnol 17:373–384

    Article  CAS  Google Scholar 

  • Nayak S, Prasanna R, Prasanna BM, Sahoo DB (2009) Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agroecologies of India. J Basic Microbiol 49:65–177

    Article  CAS  Google Scholar 

  • Neilan BA, Dittmann E, Rouhainen L, Bass RA, Schaub V, Sivonen K, Borner T (1999) Non-ribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181:4089–4097

    CAS  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada KI, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    Google Scholar 

  • Ohtakara A (1988) Chitinase and β-N-acetyl hexosamine from Pycnosporus cinnabarinu. Methods Enzymol 168:464–468

    Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    Article  CAS  Google Scholar 

  • Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12:553–556

    Article  Google Scholar 

  • Prasanna R, Saxena AK, Jaiswal P, Nayak S (2006) Development of alternative support system for viable count of cyanobacteria by MPN method. Folia Microbiol 51:455–458

    Article  CAS  Google Scholar 

  • Prasanna R, Lata TripathiR, Gupta V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria—possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  Google Scholar 

  • Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C (2009) Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl Biochem Microbiol (In Press)

  • Radhakrishnan B, Prasanna R, Jaiswal P, Nayak S, Dureja P (2009) Modulation of biocidal activity of Calothrix sp. and Anabaena sp. by environmental factors. Biologia 64:881–889

  • Ray S, Bagchi SN (2001) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–465

    Article  CAS  Google Scholar 

  • Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  Google Scholar 

  • Shrestha CL, Ona I, Muthukrishnan S (2008) Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur J Plant Pathol 120:69–77

    Article  CAS  Google Scholar 

  • Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandal M, Cohen-Bazire G (1971) Purification and properties of unicellular blue green algae (Order: Chroococcales). Bacteriol Rev 35:171–305

    CAS  Google Scholar 

  • Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenecity by a probe for the Microcystin synthetase A gene (mcy A) of the cyanobacterial genus Microcystis: comparison of toxicity with 16S RNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818

    Article  CAS  Google Scholar 

  • Volk RB (2007) Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc imsulare. J Appl Phycol 19:491–495

    Article  CAS  Google Scholar 

  • Yun CS, Amakata D, Matsuo Y, Matsuda H, Kawamukai M (2005) New chitosan degrading strains that produce chitosanases similar to choA of Mitsuaria chitosanitabida. Appl Environ Microbiol 71:5138–5144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was undertaken as a part of the Network Project on Microorganisms (Theme: Microbial Genomics), granted by the Indian Council of Agricultural Research (ICAR), New Delhi. We thank the authorities of the Division of Microbiology, IARI, New Delhi, for providing the necessary facilities for undertaking this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 285 kb)

Supplementary material 2 (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, R., Gupta, V., Natarajan, C. et al. Bioprospecting for genes involved in the production of chitosanases and microcystin-like compounds in Anabaena strains. World J Microbiol Biotechnol 26, 717–724 (2010). https://doi.org/10.1007/s11274-009-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0228-7

Keywords

Navigation