Skip to main content

Advertisement

Log in

Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

This study reports the discovery and molecular mapping of a resistance gene effective against stem rust races RKQQC and TTKSK (Ug99) derived from Aegilops geniculata (2n = 4x = 28, UgUgMgMg). Two populations from the crosses TA5599 (T5DL-5MgL·5MgS)/TA3809 (ph1b mutant in Chinese Spring background) and TA5599/Lakin were developed and used for genetic mapping to identify markers linked to the resistance gene. Further molecular and cytogenetic characterization resulted in the identification of nine spontaneous recombinants with shortened Ae. geniculata segments. Three of the wheat–Ae. geniculata recombinants (U6154-124, U6154-128, and U6200-113) are interstitial translocations (T5DS·5DL-5MgL-5DL), with 20–30% proximal segments of 5MgL translocated to 5DL; the other six are recombinants (T5DL-5MgL·5MgS) have shortened segments of 5MgL with fraction lengths (FL) of 0.32–0.45 compared with FL 0.55 for the 5MgL segment in the original translocation donor, TA5599. Recombinants U6200-64, U6200-117, and U6154-124 carry the stem rust resistance gene Sr53 with the same infection type as TA5599, the resistance gene donor. All recombinants were confirmed to be genetically compensating on the basis of genomic in situ hybridization and molecular marker analysis with chromosome 5D- and 5Mg-specific SSR/STS-PCR markers. These recombinants between wheat and Ae. geniculata will provide another source for wheat stem rust resistance breeding and for physical mapping of the resistance locus and crossover hot spots between wheat chromosome 5D and chromosome 5MgL of Ae. geniculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

STS:

Sequence-tagged sites

PCR:

Polymerase chain reaction

EST:

Expressed sequence tag

NEB:

New England biolab restriction endonuclease buffer

SSR:

Simple sequence repeat

LOD:

Logarithm of odds

GISH:

Genomic in situ hybridization

SPOT:

this is not an abbreviation but the name of a camera

IT:

Infection type

FL:

Fraction length

References

  • Admassu B, Perovic D, Friedt W, Ordon F (2011) Genetic mapping of the stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.). Theor Appl Genet 122:643–648

    Article  PubMed  CAS  Google Scholar 

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Harjit-Singh FB, Gill BS, Dhaliwal HS (2002) Ph I induced transfer of leaf and stripe rust resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    Article  CAS  Google Scholar 

  • Anugrahwati DR, Shepherd KW, Verlin DC, Zhang P, Mirzaghaderi G, Walker E, Francki MG, Dundas IS (2008) Isolation of wheat–rye 1RS recombinants that break the linkage between stem rust resistance gene SrR and secalin. Genome 51:341–349

    Article  PubMed  CAS  Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, Mcintosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88(1):97–101

    Article  CAS  Google Scholar 

  • Cifuentes M, Benavente E (2009a) Complete characterization of wheat alien metaphase-I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host). Theor Appl Genet 118:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Benavente E (2009b) Wheat–alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet 119:805–813

    Article  PubMed  CAS  Google Scholar 

  • Das BK, Saini A, Bhagwat SG, Jawali N (2006) Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed 125:544–549

    Article  CAS  Google Scholar 

  • Dhaliwal HS, Harjit-Singh, William M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterization of resistant derivatives. Euphytica 126:153–159

    Article  CAS  Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Tuleen N, Gill BS (1999) Development and identification of a set of Triticum aestivumAegilops geniculata chromosome addition lines. Genome 42:374–380

    Google Scholar 

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL, Mouseman G, Waines JG (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and greenbug. Plant Dis 69:314–316

    Google Scholar 

  • Gold J, Harder D, Townley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. EJB Electronic J Biotech Vol. 2, No. 1, Issue of April 15

  • Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Hiebert CW, Fetch TG Jr, Zegeye T (2010a) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69

    Article  PubMed  Google Scholar 

  • Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2010b) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149

    Article  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Jin Y, Singh RP (2006) Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis 90:476–480

    Article  CAS  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA (2008a) Virulence variation within the Ug99 lineage. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of the 11th International Wheat Genet Symposium, Sydney University Press, Sydney, Australia, pp 4–6

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008b) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse M, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009a) Detection of virulence to resistance gene Sr36 within race TTKS lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Jin Y, Rouse M, Olivera PD, Steffenson BJ (2009b) Progress and prospects in discovery and use of novel sources of stem rust resistance. In: Borlaug Global Rust Initiative: 2009 Technical Workshop. Obregón, Sonora, Mexico, p 28

    Google Scholar 

  • Kaur J, Bansal UK, Khanna R, Saini RG, Bariana HS (2009) Molecular mapping of stem rust resistance in HD2009/WL711 recombinant inbred line population. Intern J Plant Breed 3:29–33

    Google Scholar 

  • Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S, Gupta VS (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    Article  PubMed  CAS  Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser method. Cytologia 19:336–357

    Google Scholar 

  • Kimber G, Abu-Bakar M (1981) The genomic relationships of Triticum dichasians and T. umbellulatum. Z Pflanzenzüchtg 87:265–273

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. Special Report 353, College of Agriculture, University of Missouri, Columbia

  • Kimber G, Yen Y (1988) Analysis of pivotal-differential evolutionary patterns. Proc Natl Acad Sci USA 85:9106–9108

    Article  PubMed  CAS  Google Scholar 

  • Kimber G, Sallee PJ, Feiner MM (1988) The interspecific and evolutionary relationships of Triticum ovatum. Genome 30:218–221

    Article  Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic introgression from Ae. geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yu LX, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697

    Article  PubMed  CAS  Google Scholar 

  • Liu WX, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO (2011) Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK, Ellis JG, Dundas IS (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 119:1441–1450

    Article  PubMed  CAS  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Amazaki YY, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat: MacGene 2008. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp (verified 27 August 2009). Committee for the National BioResource Project (NBRP)/KOMUGI, Japan

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021. doi:10.1534/genetics.110.123588

    Article  PubMed  CAS  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Periyannan SK, Bansal UK, Bariana HS, Pumphrey M, Lagudah ES (2011) A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theor Appl Genet 122:1–7

    Article  PubMed  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis fsp. tritici in Ugnada. Plant Dis 84:203

    Article  Google Scholar 

  • Pumphrey MO, Dundas IS, Xu SS, Jin Y, Faris JD, Cai X, Liu WX, Qi LL, Friebe B, Gill BS (2009) Cytogenetic manipulation to enhance the utility of alien resistance genes. In: Borlaug Global Rust Initiative: 2009 Technical Workshop. Obregón, Sonora, Mexico, p 29

    Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian event leads to transfer of a stem rust resistance gene (Sr52) effective against race UG99 from Daspyrum villosum into wheat. Theor Appl Genet 123:159–167

    Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Article  Google Scholar 

  • Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  • Sambasivam PK, Bansal UK, Hayden MJ, Dvorak J, Lagudah ES, Bariana HS (2008) Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of the 11th International Wheat Genet Symposium, Sydney University Press, Sydney, Australia, pp 351–353

  • Schneider A, Molnar I, Molnar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  • Siddiqui KA, Yosufzai MN (1988) Natural and indused variation for endomorphic traits in the tribe Triticeae. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th International Wheat Genet Symposium. Institute of Plant Science Research, Cambridge, pp 139–144

    Google Scholar 

  • Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658

    Article  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua M, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspective in Agriculture, Vet Sci Nat Res 54:1–13

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008a) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino JH, Jin Y, S. Herrera-Foessel, P. Njau, R. Wanyera, R.W. Ward (2008b) Current resistance sources and breeding strategies to mitigate Ug99 threat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of the 11th International Wheat Genet Symposium, Sydney University Press, Sydney, Australia, pp 7–9

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2007) Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci 47:2013–2020

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene in diverse genetic backgrounds of wheat. Crop Sci 48:253–261

    Article  CAS  Google Scholar 

  • Tsilo TJ, Chao S, Jin Y, Anderson JA (2009) Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theor Appl Genet 118:515–524

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW and Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands

  • Wanyera R, Kinyua MG, Jin Y, Singh RP (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in eastern Africa. Plant Dis 90:113

    Article  Google Scholar 

  • Weng Y, Azhaguvel P, Devkota RN, Rudd JC (2007) PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat–rye translocations in wheat background. Plant Breed 126:482–486

    Article  CAS  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang R-C, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Article  Google Scholar 

  • Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM (2001a) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:314–316

    Article  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001b) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zeller FJ, Konig L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    Article  CAS  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat–rye translocation chromosomes indicates that centric breakage–fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey M, Dubcovsky J (2010) Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci 50:2464–2474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was part of the project “Durable Rust Resistance in Wheat” supported by Bill and Melinda Gates Foundation through a contract to Cornell University and a special USDA-CSREES grant to the Wheat Genetic and Genomic Resources Center at Kansas State University. We thank W. John Raupp for a critical editorial review of the manuscript and Shuangye Wu for her technical assistance. This is contribution number 11-285-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Additional information

Responsible Editor: Pat Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Rouse, M., Friebe, B. et al. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19, 669–682 (2011). https://doi.org/10.1007/s10577-011-9226-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9226-3

Keywords

Navigation