Skip to main content
Log in

Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adonina IG, Salina EA, Efremova TT, Pshenichnikova TA (2004) The study of introgressive lines of Triticum aestivum × Aegilops speltoides by in situ and SSR analyses. Plant Breeding 123:220–224

    CAS  Google Scholar 

  • Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal HS (2000) Ph I gene derived from Aegilops speltoides induces homoeologous chromosome pairing in wide crosses of Triticum aestivum. J Hered 91:417–421

  • Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Ae. triuncialis into hexaploid wheat. Plant Breeding 120:259–261

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph1 induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    CAS  Google Scholar 

  • Athwal RS, Kimber G (1972) The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can J Genet Cytol 14:325–333

    Google Scholar 

  • Autrique E, Singh RP, Tanksley SD, Sorrels ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83

    PubMed  CAS  Google Scholar 

  • Bálint AF, Kovács G, Sutka J (2000) Origin and taxonomy of wheat in the light of recent research. Acta Agr Hung 48:301–313

    Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    PubMed  CAS  Google Scholar 

  • Barloy D, Lemoine J, Dedryver F, Jahier J (2000) Identification of molecular markers linked to the Aegilops variabilis-derived root knot nematode resistance gene Rkn-mn1 in wheat. Plant Breeding 118:169–172

    Google Scholar 

  • Belea A (1992) Interspecific and intergeneric crosses in cultivated plants. Mezőgazdasági Kiadó, Budapest, pp 54–66

  • Belyayev A, Raskina O, Nevo E (2001) Detection of alien chromosomes from S-genome species in the addition/substitution lines of bread wheat and visualization of A-, B- and D-genomes by GISH. Hereditas 135:119–22

    Google Scholar 

  • Benavente E, Alix K, Dusautoir JC, Orellana J, David JL (2001) Early evolution of the chromosomal structure of Triticum turgidum—Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theor Appl Genet 103:1123–1128

    CAS  Google Scholar 

  • Biagetti M, Vitellozzi F, Ceoloni C (1999) Physical mapping of wheat–Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low copy DNA probes. Genome 42:1013–1019

    CAS  Google Scholar 

  • Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M (1995) RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor Appl Genet 90:1042–1048

    CAS  Google Scholar 

  • Bowden WM (1959) The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Can J Bot 37:657–684

    Google Scholar 

  • Cabrera A, Martin A (1992). A trigeneric hybrid between Hordeum, Aegilops and Secale. Genome 35:647–649

    Google Scholar 

  • Castilho A, Miller TE, Heslop-Harrison JS (1996) Physical mapping of translocation breakpoints in a set of wheat–Aegilops umbellulata recombinant lines using in situ hybridization. Theor Appl Genet 93:816–825

    CAS  Google Scholar 

  • Castilho A, Miller TE, Heslop-Harrison JS (1997) Analysis of a set of homoeologous group 1 wheat–Aegilops umbellulata recombinant chromosome lines using genetic markers. Theor Appl Genet 94:293–297

    CAS  Google Scholar 

  • Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    CAS  Google Scholar 

  • Ceoloni C, Del Signore G, Pasquini M, Testa A (1988) Transfer of mildew resistance from Triticum longissimum into wheat by Ph1 induced homeologous recombination. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 221–226

    Google Scholar 

  • Ceoloni C, Del Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in wheat–Aegilops longissima mildew resistant transfers. Hereditas 116:239–245

    Google Scholar 

  • Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquiri M (1996) Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum. Euphytica 89:87–97

    CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    CAS  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph 1 genes promoting homeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  Google Scholar 

  • Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR (2005) Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 143:19–26

    CAS  Google Scholar 

  • Chueca MC, Cauderon Y, Temple J (1977) In-vitro embyo culture technique to obtain Triticum aestivum x Aegilops species hybrids. Ann Amaelior Plant 27:539–546

    Google Scholar 

  • Cifuentes M, Blein M, Benavente E (2006) A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.). Theor Appl Genet 112:657–664

    PubMed  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    PubMed  CAS  Google Scholar 

  • Conner RL, MacDonald MD, Whelan EDP (1988) Evaluation of take-all resistance in wheat–alien amphiploid and chromosome substitution lines. Genome 30:597–602

    Google Scholar 

  • Cox T, Gill BS (1992) Use of diploid progenitors to improve leaf rust resistance in hexaploid wheat. Votr Planzenzücht 24:185–187

    Google Scholar 

  • Cox TS, Hatchett JH (1994) Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci 34:958–960

    Article  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Damania AB, Pecetti L (1990) Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J Genet Breed 44:97–102

    Google Scholar 

  • Delibes A, Otero C, Garcia-Olmedo F (1981) Biochemical markers associated with two Mv chromosomes from Aegilops ventricosa in wheat–Aegilops addition lines. Theor Appl Genet 60:5–10

    CAS  Google Scholar 

  • Delibes A, Romero D, Aguaded S, Duce A, Mena M, López-Braña I, Andrés MF, Martín-Sanchez JA, García-Olmedo F (1993) Resistance to cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping stone” procedure. Theor Appl Genet 87:402–408

    Google Scholar 

  • Delibes A, Del Moral J, Martín-Sanchez JA, Mejías A, Gallego M, Casado D, Sin E, López-Braña I (1997a) The Hessian fly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor Appl Genet 94:858–864

    CAS  Google Scholar 

  • Delibes A, Lopez-Braña I, Martín-Sánchez JA, Sin E, Martinez C, Michelena A, Del Moral J, Mejias A (1997b) Transfer of one gene for resistance to Hessian fly (Mayetiola destructor) from Aegilops ventricosa to cultivars of wheat. Ann Wheat Newslett 43:214–215

    Google Scholar 

  • Dégen Á (1917) New wild species mixture of wheat. MTA Matem Tud Ért 3–4:459–477

    Google Scholar 

  • Dhaliwal HS, Harjit-Singh, William M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126:153–159

    CAS  Google Scholar 

  • Diaz-Salazar J, Orellana J (1995) Aegilops searsii species-specific DNA and chromosome markers. Chromosome Res 3:99

    Google Scholar 

  • Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania AB (ed) Biodiversity and wheat improvement. John Wiley & Sons, New York, pp 165–169

    Google Scholar 

  • Donini P, Koebner RMD, Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat–Aegilops longissima chromatin breakpoints in powdery mildew resistant introgression lines. Theor Appl Genet 91:738–743

    CAS  Google Scholar 

  • Dosba F, Doussinault G, Rivoal R (1978) Extraction, identification and utilization of the addition lines T. aestivum–Ae. ventricosa. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp, Indian Soc Genetics & Plant Breeding, New Delhi, India, pp 332–337

  • Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F (1983) Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303:698–700

    Google Scholar 

  • Dover GA (1973) The genetics and interactions of ‘A’ and ‘B’ chromosomes controlling meiotic chromosome pairing in the Triticeae. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Gen Symp, University of Missouri, Columbia, USA, pp 653–667

  • Driscoll CJ (1974) Wheat–Triticum kotschyi (Aegilops variabilis) (2n = 28) addition lines. EWAC Newslett 4:60

    Google Scholar 

  • Driscoll CJ (1975) First compendium of wheat–alien chromosome lines. Ann Wheat Newslett 21:16–32

    Google Scholar 

  • Driscoll CJ (1976) Second compendium of wheat–alien chromosome lines. Ann Wheat Newslett 22:4–5

    Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    Article  CAS  Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Google Scholar 

  • Dvorak J (1998) Genome analysis in the Triticum–Aegilops alliance. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, University of Saskatchewan Ectension Press, Saskatoon, Saskatchewan, Canada, pp 8–11

  • Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897

    Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult plant leaf resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180

    Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to the cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77

    Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Repertorium Specierum Novarum regni Vegetabilis Beih 55:1–228

    Google Scholar 

  • Endo TR (1996) Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2. Genes Genet Syst 71:243–246

    Google Scholar 

  • Endo TR, Katayama Y (1978) Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Inf Serv 47, 48:32–35

    Google Scholar 

  • Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66:13–18

    Google Scholar 

  • Eser V (1998) Characterisation of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. mutica. Euphytica 100:269–272

    Google Scholar 

  • Farooq S, Iqbal N, Shah TM (1990) Promotion of homeologous chromosome pairing in hybrids of Triticum aestivum × Aegilops variabilis. Genome 33:825–828

    Google Scholar 

  • Fedak G (1998) Procedures for transferring agronomic traits from alien species to crop plants. In: Slinkard AE (ed) Proc 9th int wheat genet symp, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, pp 1–7

  • Feldman M (1975) Alien addition lines of common wheat containing Triticum aestivum chromosomes. Proc 12th Int Bot Cong, Leningrad, p 506

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoisier Tech & Doc, Paris, pp 3–56

    Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. Triticum spp. (Gramineae-Triticinae). In: Smartt J, NW Simmonds (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical Press, pp 184–192

  • Flinn MB, Smith CM, Reese JC, Gill BS (2001) Categories of resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii germplasm. J Econ Entomol 94:558–563

    PubMed  CAS  Google Scholar 

  • Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat grem plasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389

    Google Scholar 

  • Friebe B, Schubert V, Blüthner WD, Hammer K (1992) C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum–Ae. caudata and six derived chromosome addition lines. Theor Appl Genet 83:589–596

    Google Scholar 

  • Friebe B, Jiang J, Tuleen N, Gill BS (1995a) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156

    Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995b) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996a) Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 71:59–87

    Google Scholar 

  • Friebe B, Tuleen NA, Badaeva ED, Gill BS (1996b) Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome 39:272–276

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum–Aegilops geniculata chromosome addition lines. Genome 42:374–380

    Google Scholar 

  • Friebe B, Qi LL, Nasuda A, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum–Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Google Scholar 

  • Gale MD, Miller TE (1967) The introduction of alien genetic variation in wheat. In: Lupton FGH (ed) Wheat breeding. Chapman and Hall, London, pp 173–210

    Google Scholar 

  • Gandhi HT, Vales MI, Christy CJW, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111:561–572

    PubMed  CAS  Google Scholar 

  • Gill BS, Kimber G (1974) Giemsa C-banding evolution of wheat. Proc. Nat. Acad. Sci. USA 71:4086–4090

    PubMed  CAS  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Gill BS, Browder LE, Hatchett JH, Harvey TL, Martin TJ, Raupp WJ, Sharma HC, Waines JG (1983) Disease and insect resistance in wild wheats. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Faculty of Agricultuire, Kyoto University, Japan, pp 785–792

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breeding 69:314–316

    Google Scholar 

  • Gill BS, Hatchett JH, Raupp WJ (1987) Chromosomal mapping of Hessian fly resistance gene H13 in the D genome of wheat. J Heredity 78:97–100

    Google Scholar 

  • Gold J, Hardner D, Towley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2(1) http://www.ejbiotechnology.info/content/vol2/issue1/full/1/

  • Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breeding 122:83–85

    CAS  Google Scholar 

  • Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR (2005) Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 48:823–830

    PubMed  CAS  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur Monographischen Darstellung von Wildpflanzen sortimenten: Aegilops L. Kulturpflanze 28:33–180

    Google Scholar 

  • Hart GE, Tuleen NA (1983) Characterizing and selecting alien genetic material in derivatives of wheat–alien species hybrids by analyses of isozyme variation. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Faculty of Agricultuire, Kyoto University, Japan, pp 377–385

    Google Scholar 

  • Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor Appl Genet 100:1137–1143

    CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzki D, Zhong QL, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    Article  CAS  Google Scholar 

  • Hohmann U, Endo TR, Herrmann RG, Gill BS (1995) Characterization of deletions in common wheat induced by an Aegilops cylindrica chromosome: detection of multiple chromosome rearrangements. Theor Appl Genet 91:611–617

    CAS  Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat–Aegilops speltoides translocation line. Euphytica 133:367–370

    Google Scholar 

  • Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013

    CAS  Google Scholar 

  • Huguet-Robert V, Dedryver F, Röder MS, Korzun V, Abélard P, Tanguy AM, Jaudeau B, Jahier J (2001) Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome 44:345–349

    PubMed  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS (1997) Chromosomal location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci 37:1764–1766

    Article  Google Scholar 

  • Hutchinson J, Chapman V, Miller TE (1980) Chromosome pairing at meiosis in hybrids between Aegilops and Secale species: a study by in situ hybridisation using cloned DNA. Heredity 45:245–254

    Google Scholar 

  • Iqbal N, Reader SM, Caligari PDS, Miller TE (2000) Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet 102:1173–1179

    Google Scholar 

  • Jahier J, Doussinault G, Dosba F, Bourgeois F (1979) Monosomic analysis of resistance to eyespot in the variety “Roazon”. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp, Indian Society of Genetics and Plant Breeding, IARI, New Delhi, India, pp 437–440

  • Jahier J, Tanguy AM, Abelard P, Rivoal R (1996) Utilization of deletions to localize a gene for resistance to cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breeding 115:282–284

    Google Scholar 

  • Jahier J, Abelard P, Tanguy AM, Dedryver R, Rivoal R, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the cultivar VPM1 carries the cereal cyst nematode gene Cre5. Plant Breeding 120:125–128

    CAS  Google Scholar 

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583

    CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Jovkova ME, Kondeva E, Kostova R (1977) Biochemical investigations on Aegilops crassa x Triticum aestivum hybrids. Genet Sel 10:91–98

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1979) Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proc. 5th Int Wheat Genet Symp, Indian Society of Genetics and Plant Breeding, IARI, New Delhi, India, pp 358–364

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome 33:530–537

    CAS  Google Scholar 

  • Kihara H (1937) Genomanalyse bei Triticum und Aegilops. VII. Kurze übersicht über die Ergebnisse der Jahre 1934–36. Mem Coll Agr, Kyoto Imp Univ 41:1–61

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 19:336–357

    Google Scholar 

  • Kimber G (1967) The addition of the chromosomes of Aegilops umbellulata to Triticum aestivum var. Chinese Spring. Gen Res Camb 9:111–114

    Google Scholar 

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd Ed. American Society of Agronomy, Madison, WI, pp 154–164

    Google Scholar 

  • Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to disease. Ann Rev Phytopath 14:211–235

    Google Scholar 

  • Koebner RMD, Shepherd KW (1987) Allosyndetic recombination between a chromosome of Aegilops umbellulata and wheat chromosomes. Heredity 59:33–45

    Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic introgression from Ae. geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    PubMed  CAS  Google Scholar 

  • Kynast RG, Friebe B, Gill BS (2000) Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Chromosome Res 8:133–139

    PubMed  CAS  Google Scholar 

  • Lapochkina IF, Solomatin DA, Serezhkina GV, Grishina EE, Vishnykova KhS, Pukhalskiy VA (1996) Common wheat lines with genetic material from Aegilops speltoides Tausch. Russ J Genet 32:1438–1442

    CAS  Google Scholar 

  • Leighty G, Taylor JW (1927) Studies in natural hybridization of wheat. J Agric Res 3:865–887

    Google Scholar 

  • Lelley J, Rajháthy T (1955) Wheat breeding. Akadémiai Kiadó, Budapest pp150 and pp 287–291

  • Lelley T, Stachel M, Grausguber H, Vollmann J (2000) Analysis relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    PubMed  CAS  Google Scholar 

  • Linc G, Friebe B, Kynast RG, Molnár-Láng M, Kőszegi B, Sutka J, Gill BS (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42:497–503

    PubMed  CAS  Google Scholar 

  • Logojan AA, Molnár-Láng M (2000) Production of Triticum aestivum—Aegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228

    Google Scholar 

  • Lutz J, Hsam LK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Ma ZQ, Gill BS, Sorrels ME, Tanksley SD (1993) RFLP markers linked to two Hessian fly–resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmalh. Theor Appl Genet 85:750–754

    CAS  Google Scholar 

  • Ma ZQ, Sorrels ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistane genes Pm1, Pm2, Pm3 and Pm4. Genome 37:871–875

    PubMed  CAS  Google Scholar 

  • Maan SS (1975) Exclusively preferential transmission of an alien chromosome in wheat. Crop Sci 15:287–292

    Article  Google Scholar 

  • Mac Key J (1966) Species relationships in Triticum. In: Findlay KW, Shepherd KW (eds) Proc 2nd Int Wheat Genet Symp, Hereditas, Suppl 2:237–276

  • Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci 22:1089

    Article  Google Scholar 

  • Martín-Sanchez JA, Gómez-Colmenajero M, Del Moral J, Sin E, Montes MJ, González-Belinchon C, López-Braña I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255

    PubMed  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-testing hexaploid relatives. J Heredity 37:107–116

    Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzüht 89:295–306

    Google Scholar 

  • McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp. Institute of Plant Science Research, Cambridge, UK pp 1225–1324

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Published by CSIRO Australia in conjunction with Kluwer Academic Publishers, Dordrecht, The Netherlands

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp Vol 4, Instituto Sperimentale per la Cerealcoltura, Rome pp 27–29

    Google Scholar 

  • Miller TE (1983) Preferential transmission of alien chromosomes in wheat. In: Brandham PE, Bennett MD (eds) Proc 2th Kew Chromosome Conf, George Allen & Unwin, London, pp 173–182

  • Miller TE (1984) The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589

    Google Scholar 

  • Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet 61:27–33

    Google Scholar 

  • Miller TE, Reader SM, Ainsworth CC, Summers RW (1987) The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T. aestivum. In: Jorna ML, Shootmaker LAJ (eds) Cereal breeding related to integrated cereal production: Proc Eucarpia Conf, Wageningen, The Netherlands, pp 179–183

  • Miller TE, Reader SM, Singh D (1988) Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 387–390

    Google Scholar 

  • Millet E, Avivi Y, Zaccai M, Feldman M (1988) The effect of substitution of 5Sl of Aegilops longissima for its wheat homeologues on spike morphology and on several quantitative traits. Genome 30:473–478

    Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    PubMed  CAS  Google Scholar 

  • Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159

    Google Scholar 

  • Molnár I, Schneider A, Molnár-Láng M (2005) Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences. Cereal Res Commun 33:673–680

    Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. American Society of Agronomy, Madison, USA, pp 19–87

    Google Scholar 

  • Muramatsu M (1973) Genic homology and cytological differentiation of the homeologous-group-5 chromosomes of wheat and related species. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Gen Symp. University of Missouri, Columbia, USA, pp 719–724

    Google Scholar 

  • Naik S, Gill KS, Prakasa RVS, Gupta VS, Tamhankara RSA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    CAS  Google Scholar 

  • Naranjo T, Maestra B (1995) The effect of ph mutations on homeologous pairing in hybrids of wheat with Triticum longissimum. Theor Appl Genet 91:1265–1270

    Google Scholar 

  • Nasuda S, Friebe B, Busch W, Kynast RG, Gill BS (1998) Structural rearrengement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat–Ae. comosa translocations in wheat improvement. Theor Appl Genet 96:780–785

    CAS  Google Scholar 

  • Netzle S, Zeller FJ (1984) Cytogenetic relationship of Aegilops longissima chromosomes with common wheat chromosomes. Pl Syst Evol 145:1–13

    Google Scholar 

  • Orellana J, Vazquez JF, Carrillo JM (1989) Genome analysis in wheat–rye–Aegilops caudata trigeneric hybrids. Genome 32:169–172

    Google Scholar 

  • Ozkan H, Feldman M (2001) Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina. Genome 44:1000–1006

    PubMed  CAS  Google Scholar 

  • Peil A, Korzun V, Schubert V, Scumann E, Weber WE (1997) RAPDs as molecular markers for the detection of Aegilops markgrafii chromatin in addition an euploid introgression lines of hexaploid wheat. Theor Appl Genet 94:934–940

    CAS  Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Roeder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum and Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    CAS  Google Scholar 

  • Pietro ME, Tuleen NA, Hart GE (1988) Development of wheat –Triticum searsii disomic chromosome addition lines. In: Koebner R, Miller TE (eds) Proc 7th int wheat gen symp. Institute of Plant Science Research, Cambridge, UK, pp 409–413

    Google Scholar 

  • Popova G, (1923) Species of Aegilops and their mass hybridization with wheat in Turkestan. Ball Appl Bot 13:461–482

    Google Scholar 

  • Rajháthy T (1954) Genetic investigation of interspecific wheat hybrids. Acta Agron Hung 4:203–237

    Google Scholar 

  • Raupp WJ, Gill BS, Browder LE (1983) Leaf rust resistance in Aegilops squarrosa L. its transfer and expression in common wheat (Triticum aestivum L.). Phytopathology 73:818

    Google Scholar 

  • Raupp WJ, Amri A, Hatchett JH, Gill BS, Wilson DL, Cox TS (1993) Chromosomal location of Hessian fly-resistance genes H22, H23 and H24 derived from Triticum tauschii in the D genome of wheat. J Heredity 84:142–145

    Google Scholar 

  • Raupp WJ, Gill BS, Friebe B, Wilson DL, Cox TS, Sears RG (1995) The Wheat Genetics Resource Center: Germ plasm conservation, evaluation and utilization. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China pp 469–475

    Google Scholar 

  • Raupp WJ, Friebe B, Wilson DL, Cox TS, Gill BS (1997) Kansas State’s Wheat Genetics Resource Center provides unique oasis for germplasm research. Diversity 13:21–23

    Google Scholar 

  • Raupp WJ, Sukhwinder-Singh, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    CAS  Google Scholar 

  • Reader SM, Miller TE (1987) The simultaneous substitution of two pairs of chromosomes from two alien species in Triticum aestivum cv. Chinese Spring.Cer Res Comm 15:39–42

    Google Scholar 

  • Riley R, Chapman V, Macer RCF (1966) The homology of an Aegilops chromosome causing stripe rust resistance. Can J Genet Cytol 8:616–636

    Google Scholar 

  • Riley R, Chapman V, Johnsson R (1968) The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genet Res Camb 12:199–219

    Google Scholar 

  • Riley R, Chapman V, Miller TE (1971) Ann Rep Plant Breeding Inst, Cambridge (see Shepherd and Islam 1988)

  • Riley R, Chapman V, Miller TE (1973) The determination of meiotic chromosome pairing. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp, University of Missouri, Columbia, USA, pp 731–738

    Google Scholar 

  • Rivoal R, Dosba F, Jahier J, Pierre JS (1986) Wheat–Aegilops ventricosa Tausch. addition lines. VI. Study of the chromosomal location of resistance to Heterodera avenae Woll. Agronomie 6:143–148

    Google Scholar 

  • Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175

    CAS  Google Scholar 

  • Romero MD, Montes MJ, Sin E, López-Brana I, Duce A, Martín-Sánchez JA, Andrés MF, Delibes A, (1998) A cereal cyst nematode (Heterodera avenae Woll) resistance gene transferred from Aegilops ventricosa to hexaploid wheat. Theor Appl Genet 96:1135–1140

    Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    PubMed  CAS  Google Scholar 

  • Schachermayr G, Siedler H, Gale MD, Winzeler H, Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115

    CAS  Google Scholar 

  • Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat/Aegilops biuncialis disomic addition lines. Genome 48:1070–1082

    PubMed  Google Scholar 

  • Schubert V (1989) Untersuchungen an Triticum aestivum–Aegilops markgrafii Kreuzungen und die Nutzung hochrepetitiver DNA Sequenzen in der squash dot technik. Thesis, Martin-Luther University, Halle-Wittenberg

  • Schubert V, Blüthner WD (1995) Triticum aestivum-Aegilops markgrafii addition lines: production and morphology. In: Li ZS, Xin ZY (eds) Proc. 8th Wheat Int Genet Symp, China Agricultural Scientech Press, Beijing, China, pp 421–425

    Google Scholar 

  • Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be analysed by a cloned disease resistance gene-like sequence. Theor Appl Genet 102:600–605

    CAS  Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp in Biol 9:1–22

    Google Scholar 

  • Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593

    Google Scholar 

  • Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 295–300

    Google Scholar 

  • Sepsi A, Németh K, Molnár I, Szakács É, Molnár-Láng M (2006) Induction of chromosome rearrangements in a 4H(4D) wheat–barley substitution using a wheat line containing a Ph suppressor gene. Cereal Res Commun 34:1215–1222

    CAS  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant-leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    CAS  Google Scholar 

  • Sharma NC (1979) Irregular meiosis in wheat Triticum aestivum x Aegilops sharonensis hybrid. Cell Chromosome Newsletter 2:14–16

    Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Google Scholar 

  • Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat–alien chromosome lines. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 1373–1395

    Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    PubMed  CAS  Google Scholar 

  • Slageren MW van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen; International Center for Agricultural Research in Dry Areas, Aleppo, Syria

  • Smith CM, Starkey S (2003) Resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii synthetic wheats. J Econ Entemol 96:1571–1576

    Article  Google Scholar 

  • Spetsov P, Mingeot D, Jacquemin JM, Samardjieva K, Marinova E (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93:49–54

    Google Scholar 

  • Stepien L, Chen Yu, Chelkowski J, Kowalczyk K, Chen Y (2001) Powdery mildew resistance genes in wheat: verification of STS markers. J Appl Genet 42:413–423

    PubMed  CAS  Google Scholar 

  • Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breeding Sci 56:351–357

    Google Scholar 

  • Synder JR, Mallory-Smith CA, Balter S, Hansen JL, Zemetra RS (2000) Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci 48:588–593

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1983) Genetic analyses on a gametocidal gene originated from Aegilops aucheri. In: Sakamoto S (ed) Proc 6th Int Wheat Gen Symp, Faculty of Agriculture, Kyoto University, Japan pp 1077–1081

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analysis in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol 26:78–84

    Google Scholar 

  • Vanzetti LR, Brevis JK, Dubcovsky J, Helguera M (2006) Identification of microsatellites linked to Lr47 Electronic J Biotech 9(3) http://www.ejbiotechnology.info/content/vol9/issue3/full/23/index.html

  • Vavilov NI (1935) Theoretishe Grundlagen der Pflanzenzüchtung. Staatsverlag, Moscow-Leningrad

  • Vikal Y, Chhuneja P, Singh R, Dhaliwal HS (2004) Tagging of an Aegilops speltoides derived leaf rust resistance gene Lr28 with a microsatellite marker in wheat. J Plant Biochem Biotechnol 13:47–49

    CAS  Google Scholar 

  • Wang ZN, Hang A, Hansen J, Burton C, Mallory-Smith CA, Zemetra RS (2000) Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome 43:1038–1044

    PubMed  CAS  Google Scholar 

  • Wells DG, Kota RS, Sandhu HS, Gardner WAS, Finney KF (1982) Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci 22:1277–1278

    Article  Google Scholar 

  • Weng Y, Lazar MD (2002) Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breeding 121:218–223

    CAS  Google Scholar 

  • Witcombe JR (1983) A guide to the species of Aegilops L.: their taxonomy, morphology, and distribution. International Board for Plant Genetic Resources (IPGRI), Rome, Italy, 74pp

  • Yu MQ, Person-Dedryver F, Jahier J (1990) Resistance to root knot nematode, Meloidogyne naasi (Franklin) transferred from Aegilops variabilis Eig. to bread wheat. Agronomie 6:451–456

    Google Scholar 

  • Zaharieva M, Monneveux P, Henry M, Rivoal. R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38

    Google Scholar 

  • Zeller FJ, Konig L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194

    CAS  Google Scholar 

  • Zemetra RS, Hansen J, Mallory-Smith CA (1998) Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46:313–317

    CAS  Google Scholar 

  • Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75

    CAS  Google Scholar 

  • Zhu L, Smith CM, Fritz A, Boyko EV, Flinn M (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rodani). Theor Appl Genet 109:289–293

    PubMed  CAS  Google Scholar 

  • Zhukovsky PM (1928) A critical systematic survey of the species of the genus Aegilops L. Bull Appl Bot, Genet and Plant Breeding 18:497–609

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hungarian Wheat Ear Research Consortium (OM-00018/2004). The authors wish to express their gratitude to B. Harasztos for revising the manuscript linguistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Molnár-Láng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, A., Molnár, I. & Molnár-Láng, M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1–19 (2008). https://doi.org/10.1007/s10681-007-9624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9624-y

Keywords

Navigation