Skip to main content
Log in

Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3Ss by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3Ss, 3B/3Ss and 3D/3Ss) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3SsS, T3BL·3SsS and T3DL·3SsS) and one recombinant (T3DS-3SsS·3SsL) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3SsS-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3SsS-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3SsS of Ae. searsii are currently under way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Strauss I, Vardi A (1979) Chromosome pairing and fertility of F1 hybrids of Aegilops longissima and Ae. searsii. Can J Genet Cytol 21:261–272

    Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    Article  Google Scholar 

  • Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res 109:293–297

    Article  PubMed  CAS  Google Scholar 

  • Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H (2009) A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chem 86:26–32

    Article  CAS  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Article  Google Scholar 

  • Jin Y, Singh RP (2006) Resistance in US wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis 90:476–480

    Article  CAS  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA (2008a) Virulence variation within the Ug99 lineage. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium Sydney University Press, Sydney, Australia, pp 4–6

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008b) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse M, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009a) Detection of virulence to resistance gene Sr36 within race TTKS lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Jin Y, Rouse M, Olivera PD, Steffenson BJ. (2009b) Progress and prospects in discovery and use of novel sources of stem rust resistance. In: Borlaug Global Rust Initiative 2009 Technical Workshop, Obregón, Sonora, Mexico, p 28

  • Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS·1BL translocation in wheat. Euphytica 94:257–261

    Article  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet 64:239–248

    Article  Google Scholar 

  • Masoudi-Nejiad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal gene. Chromosome Res 10:349–357

    Article  Google Scholar 

  • McIntosh RA, Amazaki YY, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat, http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317

    Article  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  • Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua M, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race UG99 (TTKS) of stem rust pathogen. CAB Reviews: Perspec Agric Vet Sci Nat Res 54:1–13

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008a) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino JH, Jin Y, Herrera-Foessel S, Njau P, Wanyera R, Ward RW (2008b) Current resistance sources and breeding strategies to mitigate Ug99 threat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium Sydney University Press, Sydney, Australia, pp 7–9

  • Singh D, Girma B, Njau P, Wanyera R, Badebo A, Bhavani S, Singh RP, Huerta-Espino J, Woldeab G and Ward R (2009) Screening for stem rust resistance in East Africa. In: Borlaug Global Rust Initiative: 2009 Technical Workshop Obregón, Sonora, Mexico, pp 33–38

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stokstad E (2007) Plant pathology: deadly wheat fungus threatens world’s breadbaskets. Science 315:1786–1787

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Hu S, Liu X, Qian W, Hao S, Zhang A, Wang D (2006) Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor Appl Genet 113:631–641

    Article  PubMed  CAS  Google Scholar 

  • Wanyera R, Kinyua MG, Jin Y, Singh RP (2006) The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in eastern Africa. Plant Dis 90:113

    Article  Google Scholar 

  • Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  • Xu SS, Dundas IS, Pumphrey MO, Jin Y, Faris JD, Cai X, Qi LL, Friebe BR, Gill BS (2008) Chromosome engineering to enhance utility of alien-derived stem rust resistance. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntye L, Sharp P (eds) Proceedings of 11th International Wheat Genet Symposium Sydney University Press, Sydney, Australia, pp 12–14

  • Xu SS, Jin Y, Klindworth DL, Wang R-C, Cai X (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Article  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was part of the project “Durable Rust Resistance in Wheat” supported by Bill and Melinda Gates Foundation and a special USDA-CSREES grant to the Wheat Genetic and Genomic Resources Center at Kansas State University. We thank W. John Raupp for critical editorial review of the manuscript and Shuangye Wu for her technical assistance. This is contribution number 11-148-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Additional information

Communicated by B. Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Jin, Y., Rouse, M. et al. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122, 1537–1545 (2011). https://doi.org/10.1007/s00122-011-1553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1553-4

Keywords

Navigation