Skip to main content
Log in

Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystal (CNC), as a natural/sustainable material, has attracted considerable attention, and its preparation from the sulfuric acid hydrolysis process has attained the precommercial demonstration stage. In this study, the process was further characterized by following the alkali solubility in an 18 % sodium hydroxide solution (S18) and the degree of polymerization (DP) of the cellulosic substrate during the sulfuric acid hydrolysis of cotton fibers. The results showed that the S18 increased as the hydrolysis progressed until reaching a nearly constant level at about 45 min, while the DP exhibited a decrease and approached a nearly constant level at 55 min. The emergence of the constant S18 coincided with the formation/appearance of CNC; thus, a “critical stage” with irregular CNC particle size but high yield was identified during the hydrolysis. The optimization of the CNC preparation process was realized under a shortened reaction time with 41.7 % yield (with a CNC size of <150 nm). Therefore, the amount of S18 can be used as a new characterization method for the preparation of CNC or other cellulose-derived products during the acid hydrolysis process with the advantage of a favorable product yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84(1):211–215

    Article  CAS  Google Scholar 

  • Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90(1):709–716

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  • Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725

    Article  CAS  Google Scholar 

  • Chunilall V, Bush T, Larsson PT (2013) Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS 13C-NMR. Cellulose-fundamental aspects. Intech publishing, Manhattan, New York, pp 69–90

    Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystalline preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Fan J, Li Y (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188

    Article  CAS  Google Scholar 

  • Fatehi P, Tutus A, Xiao H (2009) Cationic-modified PVA as a dry strength additive for rice straw fibers. Bioresour Technol 100:749–755

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, selfassembling, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68

    Article  CAS  Google Scholar 

  • Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114

    Article  CAS  Google Scholar 

  • Kang G, Zhang Y, Ni Y, Van Heiningen ARP (2006) Influence of lignin on the degradation of cellulose during ozone treatment. J Wood Chem Technol 15:413–430

    Article  Google Scholar 

  • Ladavos AK, Katsoulidis AP, Iosifidis A, Triantafyllidis KS, Pinnavaia TJ, Pomonis PJ (2012) The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous Mesoporous Mater 151:126–133

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612

    Article  CAS  Google Scholar 

  • Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 22:415–422

    Article  Google Scholar 

  • Lu P, Hsieh Y (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573

    Article  CAS  Google Scholar 

  • Matin M, Rahaman MM, Nayeem J, Sarkar M, Jahan MS (2015) Dissolving pulp from jute stick. Carbohydr Polym 115:44–48

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulose treatment. Bioresour Technol 154:109–113

    Article  CAS  Google Scholar 

  • Mosai S, Wolfaardt JF, Prior BA, Christov LP (1999) Evaluation of selected white-rot fungi for biosulfite pulping. Bioresour Technol 68:89–93

    Article  CAS  Google Scholar 

  • Ng H, Sin LT, Tee T, Bee S, Hui D, Low C, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B 75:176–200

    Article  CAS  Google Scholar 

  • Nikkhah Dafchahi M, Resalati H (2012) Evaluation of pre-hydrolyzed soda-AQ dissolving pulp from Populus Deltoides using an oded bleaching sequence. Bioresources 7(3):3283–3292

    Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure andhydrogen bonding system in cellulose iα from synchrotron X-ray and neutronfiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Micro fibrillated cellulose and new nanocomposite materials. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Sun B, Hou Q, Liu Z, Ni Y (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22:1135–1146

    Article  CAS  Google Scholar 

  • Tang L, Huang B, Ou W, Chen X, Chen Y (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102(23):10973–10977

    Article  CAS  Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilhot H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibers. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Tian X, Fang Z, Jiang D, Sun X (2011) Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnol Biofuels 4(1):53–66

    Article  CAS  Google Scholar 

  • Tian C, Zheng L, Miao Q, Cao C, Ni Y (2014) Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21:3647–3654

    Article  CAS  Google Scholar 

  • Voronova MI, Surov OV, Zakharov AG (2013) Nanocrystalline cellulose with various contents of sulfate groups. Carbohydr Polym 98:465–469

    Article  CAS  Google Scholar 

  • Wahl V, Saurugger E, Khinast J, Laggner P (2015) Specific surface, crystallinity, and dissolution of lyophilized fibrinogen. A study by combined small- and wide-angle X-ray scattering (SWAXS). Eur J Pharm Biopharm 89:374–382

    Article  CAS  Google Scholar 

  • Wang Q, Zhu J, Reiner R, Verrill S, Baxa U, McNeil S (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19:2033–2047

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  • Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90(1):644–649

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (31501440), China Postdoctoral Science Foundation (2015M571268), Special Fund for Agro-scientific Research in the Public Interest (201303071-06), Natural Science Foundation of Tianjin City (13JCZDJC29400), National Natural Science Foundation of China (31170541) and the project of Tianjin Science and Technology Commission (15JCQNJC14900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhang or Chuanling Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Zhang, M., Hou, Q. et al. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23, 439–450 (2016). https://doi.org/10.1007/s10570-015-0803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0803-z

Keywords

Navigation