Skip to main content
Log in

Jute as raw material for the preparation of microcrystalline cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose was extracted at a yield of 59.8% from jute fibres based on the formic acid/peroxyformic acid process at an atmospheric pressure. The amounts of dissolved lignin and hemicelluloses were determined in the spent liquor. The results showed that the spent liquor contained 10.6% total sugars and 10.9% lignin (based on jute). Microcrystalline cellulose (MCC) was further prepared from the jute cellulose based on the acid hydrolysis technique. A very high yield, 48–52.8% (based on the jute raw material) was obtained. The acid hydrolysate of cellulose contained 2.7% glucose and 0.2% xylose. The MCC samples obtained from two different conditions, one at a low acidity and the other at a high acidity, were characterized by means of Thermo Gravimetric Analysis, Fourier Transform Infrared, X-ray detraction, Scanning Electron Micrograph, and Transmission Electron Micrograph techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibres from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  CAS  Google Scholar 

  • Amidon TE, Christopher DW, Shupe AM, Wang Y, Graves M, Liu S (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bioenergy 2(2):100–120

    Article  Google Scholar 

  • Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27(5):542–550

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Pekka S, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49(6):1435

    Google Scholar 

  • Batitista OA (1975) Microcrystal polymer science. McGraw Hill, New York, p 17

    Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinforced Plast Compos 24:1259–1268

    Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mole Struct 705(1–3):189–193

    Article  CAS  Google Scholar 

  • Cetin NS, Ozmen NU (2002) Use of organosolv lignin in phenol-formaldehyde resins for particleboard production I. Organosolv lignin modified resins. Int J Adhes Adhesives 22(6):477–480

    Article  CAS  Google Scholar 

  • Chambost V, Mcnutt J, Stuart PR (2008) Guided tour: implementing the forest biorefinery (FBR) at existing pulp and paper mills. Pulp Paper Canada 109(7):1–9

    Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  • Fahma F, Iwamoto S, Hori N, Twata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions, Paperback edition edn. Walter de Gruyter, Berlin

    Google Scholar 

  • Gassan J, Bledzki A (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82:1417–1422

    Article  CAS  Google Scholar 

  • He Z, Ni Y, Zhang E (2004a) Further understanding on the cationic demand of dissolved substances during peroxide bleaching of a Spruce TMP. J Wood Chem Technol 24(2):153–168

    Article  CAS  Google Scholar 

  • He Z, Ni Y, Zhang E (2004b) Alkaline darkening and its relationship to peroxide bleaching of mechanical pulp. J Wood Chem Technol 24(2):1–12

    Google Scholar 

  • He Z, Ni Y, Zhang E (2005) Further understanding on the sodium borohydride assisted peroxide bleaching of mechanical pulps (the P-R process). Appita J 58(1):72–76

    CAS  Google Scholar 

  • Hermans PH, Weidinger A (1950) Quantitative investigation of X-ray diffraction by “amorphous” polymers and some other noncrystalline substances. J Polymer Sci 5:269–281

    Article  CAS  Google Scholar 

  • Jahan MS (2009) Studies on the effect of prehydrolysis and amine in cooking liquor on producing dissolving pulp from jute (Corchorus capsularis). Wood Sci Technol 43:213–224

    Article  CAS  Google Scholar 

  • Jahan MS, Mun SP (2009) Isolation and characterization of lignin from tropical and temperate hardwood. Bangladesh J Sci Ind Res 44(3):271–280

    Google Scholar 

  • Jahan MS, Chowdhury DAN, Islam MK, Islam MS (2007a) Organic pulping of jute and its mechanism. Cellulose Chem Technol 41(2–3):137–147

    CAS  Google Scholar 

  • Jahan MS, Chowdhury DAN, Islam MK (2007b) Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania aculeata), kash (Saccharum spontaneum) and banana stem (Musa Cavendish). Ind Crop Prod 26(3):324–331

    Article  CAS  Google Scholar 

  • Jahan MS, Chowdhury DAN, Islam MK (2007c) Pulping of dhaincha (Sesbania aculeata). Cellulose Chem Technol 41:413–421

    CAS  Google Scholar 

  • Jahan MS, Maruf AA, Quaiyyum MA (2007d) Comparative studies of pulping of jute fiber, jute cutting and jute caddis. Bangladesh J Sci Ind Res 42(4):425–434

    CAS  Google Scholar 

  • Jahan MS, Saeed A, Ni Y, He Z (2009) Pre-extraction and its impact on the alkaline pulping of bagasse. J Biobased Mater Bioenergy 3(4):380–385

    Article  CAS  Google Scholar 

  • Jimenez L, Torre M, Maestre J, Ferrer Perez F (1998) Delignification of wheat straw by use of low molecular weight organic acid. Holzforschung 52(2):191–196

    Article  Google Scholar 

  • Kham L, Bigot YE, Delmas M, Avignon G (2005) Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Ind Crops Prod 21:9–15

    Google Scholar 

  • Kubo S, Uraki Y, Sano Y (1998) Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 36(7–8):1119–1124

    Article  CAS  Google Scholar 

  • Lam HQ, Bigot YL, Delmas M, Avignon G (2001) Formic acid pulping of rice straw. Ind Crop Prod 14:65–71

    Article  CAS  Google Scholar 

  • Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SK (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10(1):77–82

    Article  CAS  Google Scholar 

  • Leonard YM, Martin PA (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polymer Sci 84:2222–2234

    Article  Google Scholar 

  • Leschinnsky M, Sixta H, Patt R (2009) Detailed mass balances of the autohydrolysis of Eucalyptus globulus at 170 °C. BioRes 4(2):687–703

    Google Scholar 

  • Li H, Saeed A, Jahan MS, Ni Y, van Heiningen ARP (2010) Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production. J Wood Chem Technol 30(1):48–60

    Article  CAS  Google Scholar 

  • Liu Z, Fatehi P, Jahan MS, Ni Y (2010) Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. doi:10.1016/j.biortech.2010.08.049

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline vellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose (Dordrecht, Netherlands) 15(1):149–159

    Google Scholar 

  • Muurinen E (2000) Organosolv pulping—a review and distillation study related to peroxy acid pulping. Ph.D Thesis, Faculty of Technology, University of Oulu, Finland

  • Oh SY, Dong YI, Younsook S, Gon S (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428

    Article  CAS  Google Scholar 

  • Pan X, Sano P (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2(1):55–65

    Article  CAS  Google Scholar 

  • Ray PK (1969) On the degree of crystallinity in jute and mesta fibers in different states of purifications and moisture conditions. J Appl Polym Sci 13(12):2593–2600

    Article  CAS  Google Scholar 

  • Poppius K, Mustonen R, Huovila T, Sundquist J (1991) Milox pulping with acetic acid/peroxy acid. Paperi ja Puu 73(2):154–158

    Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23(1):1–8

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions of oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Samir ASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Samir ASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  CAS  Google Scholar 

  • Satheesh MNK, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3(1):1–24

    Google Scholar 

  • Sedlak M, Ho YWN (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 114(1–3):403–416

    Article  Google Scholar 

  • Seisto A, Poppius KL (1997) Peroxyformic acid pulping of nonwood plants by the milox method—part 1: pulping and bleaching. Tappi J 80(9):215–221

    CAS  Google Scholar 

  • Sugiama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymerization of native cellulose. Macromolecules 24:2461–2466

    Article  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106

    Article  CAS  Google Scholar 

  • Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) Structural changes of bamboo cellulose in formic acid. BioResources 3(2):297–315

    CAS  Google Scholar 

  • van Heiningen ARP (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Paper Canada 107(6):38–43

    Google Scholar 

  • Wang H, Li H, Lu Y (2009) Preparation and characterization of micro- and nano-fibrils from jute. Fibers Polym 10(4):442–445

    Article  CAS  Google Scholar 

  • Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69(2):391–397

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yoon SH, MacEwan K, van Heiningen A (2008) Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery. Tappi J 7:27–31

    CAS  Google Scholar 

  • Yu X, Atalla RH (1998) A staining technique for evaluating the pore structure variations of micricrystalline cellulose powders. Powder Technol 98:135–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from NSERC and the Canada Research Chairs program is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sarwar Jahan or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahan, M.S., Saeed, A., He, Z. et al. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18, 451–459 (2011). https://doi.org/10.1007/s10570-010-9481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9481-z

Keywords

Navigation