Skip to main content
Log in

Microbial lipid production: screening with yeasts grown on Brazilian molasses

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h−1, 0.41 g l−1 h−1, and 41 % for Rsp. toruloides; 0.20 h−1, 0.27 g l−1 h−1, and 36 % for Rta. glutinis; 0.115 h−1, 0.135 g l−1 h−1, and 27 % for Rta. minuta; and 0.11 h−1, 0.13 g l−1 h−1, and 32 % for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almazan O, Klibansky M, Otero MA (1981) Microbial fat synthesis by Rhodorula Glutiinis from blackstrap molasses in continuous culture. Biotechnol Lett 3:663–666

    Article  CAS  Google Scholar 

  • Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkey. Biores Technol 157:214–222

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057

    Article  CAS  Google Scholar 

  • Cuellar MC, Heijnen JJ, Wielen LAMVD (2013) Large-scale production of diesel-like biofuels – process design as an inherent part of microorganism development. Biotechnol J 8:682–689

    Article  PubMed  CAS  Google Scholar 

  • Doran PM (1995) Bioprocess Engineering Principles. In: Fluid Flow and Mixing. Academic Press, pp 129-163

  • Fales FW (1971) Evaluation of a spectrophotometric method for determination of total fecal lipid. Clin Chem 17:1103–1108

    PubMed  CAS  Google Scholar 

  • Granger LM, Perlot P, Goma G, Pareilleux A (1992) Kinetics of growth and fatty acid production of Rhodotorula glutinis. Appl Biochem Biotechnol 37:13–17

    CAS  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Biores Technol 97:667–678

    Google Scholar 

  • Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G (1993) Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum Curvatum grown in single stage continuous culture. Appl Microbiol Biotechnol 40:483–488

    Article  CAS  Google Scholar 

  • Hugot M (1969) Manual da engenharia açucareira. Cozimento. Mestre Jou Publ Ltd, São Paulo, pp 667–752

    Google Scholar 

  • Jacob Z, Krishnamurthy MN (1990) Studies on physicochemical characteristics and fatty acid composition of lipid produced by a strain of Rhodotorulla gracillis CFR-1. J Am Oil Chem Soc 67:642–645

    Article  CAS  Google Scholar 

  • Johnson VW, Singh M, Saini VS, Adhikari DK, Sista V, Yadav NK (1995) Utilization of molasses for the production of fat by an oleaginous yeast, Rhodotorula glutinis IIP-30. J Ind Microbiol 14:1–4

    Article  CAS  Google Scholar 

  • Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    Article  CAS  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid producing microheterotrophs. J Microbiol Methods 43:107–116

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enz Microb Tech 41:312–317

    Article  Google Scholar 

  • Lopes DC, Neto AJS, Martins PAR (2011) Economic simulation of biodiesel production: SIMB-E tool. Energy Econ 33:1138–1145

    Article  Google Scholar 

  • Meade GP, Chen JCP (1977) Cane Sugar Handbook. Wiley Publ Ltd, New York

    Google Scholar 

  • Meesters P, Vanderwal H, Weusthuis R, Eggink G (1996) Cultivation of the oleaginous yeast Cryptococcus curvatus in a new reactor with improved mixing and mass transfer characteristics Surer®). Biotechnol Tech 10:277–282

    Article  CAS  Google Scholar 

  • Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Biores Technol 101:646–653

    Article  CAS  Google Scholar 

  • Pan JG, Rhee JS (1986) Kinetic and energetic analyses of lipid accumulation in batch culture of Rhodotorula glutinis. J Ferment Technol 64:557–560

    Article  CAS  Google Scholar 

  • Pradella JGC (1980) Contribuição ao estudo da cinética do crescimento celular e acumulo de lipídios por Rhodotorula gracilis. PhD thesis; University of Campinas, Campinas

  • Pradella JGC, Ienczak JL, Delgado CR, Taciro MK (2012) Carbon source pulsed feeding to attain high yield and high produtivity in poly(3-hydroxybutyrate)(PHB) production from soybean oil using Cupriavidus necator. Biotechnol Lett 34:1003–1007

    Article  PubMed  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Rein P (2013) Cane Sugar Engineering. Molasses Exhaustion. Bartens Publ Ltd, Berlin, pp 455–465

    Google Scholar 

  • Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231

    Article  CAS  Google Scholar 

  • Saxena V, Sharma CD, Bhagat SD, Saini VS, Adhikari DK (1998) Lipid and fatty acid biosynthesis by Rhodotorula minuta. J Am Oil Chem Soc 75:501–505

    Article  CAS  Google Scholar 

  • Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition 19:93–114

    Article  PubMed  CAS  Google Scholar 

  • UNICA (2014) União da Indústria de Cana de Açúcar. Relatório final da safra 2012/2013, Região centro-sul. Acessado em 13 de maio de 2014

  • Vicente G, Bautista LF, Errez FJG, Rodriguez R, Martinez V, Rodriguez-Frometa RA, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24:3173–3178

    Article  CAS  Google Scholar 

  • Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9

    Article  CAS  Google Scholar 

  • Wiebe MG, Koivuranta K, Penttila M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12(1):26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamauchi H, Mori H, Kobayashi T, Shimizu S (1983) Mass production of lipids by Lipomyces starkeyi in microcomputer aided fed batch culture. J Ferment Technol 61:275–280

    CAS  Google Scholar 

  • Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biotechnol 29:211–218

    Article  CAS  Google Scholar 

  • Zabriskie DW, Aminger WB, Phillips DH (1980) Albano PA. Traders’ guide to fermentation media formulation Memphis, Tenesse

    Google Scholar 

  • Zhao X, Kong XL, Hua YY, Feng B, Zhao ZB (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110:405–412

    Article  CAS  Google Scholar 

  • Zhao X, Hu C, Wu S, Shen H, Zhao ZK (2011) Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol 38:627–632

    Article  PubMed  CAS  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.P.F., Ienczak, J.L., Rossell, C.E.V. et al. Microbial lipid production: screening with yeasts grown on Brazilian molasses. Biotechnol Lett 36, 2433–2442 (2014). https://doi.org/10.1007/s10529-014-1624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1624-0

Keywords

Navigation