Skip to main content
Log in

Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  • Achal V, Savant VV, Reddy SM (2007) Phosphate solubilization by wilde type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39(2):695–699

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014:14. https://doi.org/10.1155/2014/296521

  • Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiol Lett 362(23):184

    Article  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2018) The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39

    Article  PubMed  Google Scholar 

  • Aloo BN, Mbega ER, Makumba BA (2020) Rhizobacteria based technology for sustainable cropping of potato (Solanum tuberosum L.). Potato Res 63:157–177

    Article  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbio l 8:971

    Article  Google Scholar 

  • Al-Rashdi FK, Al-Sadi AM, Al-Riyamy BZ, Maharachchikumbura SSN, Khalfan Al-Ruqaishi H, Velazhahan R (2020) Alternariaalternata and Neocosmospora sp. from the medicinal plant Euphorbia larica exhibit antagonistic activity against Fusarium sp., a plant pathogenic fungus. All Life 13:223–232

    Article  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1–2):305–315

    Article  CAS  Google Scholar 

  • Armada E, Probanza A, Roldán A, Azcón R (2016) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavanduladentata plants. J Plant Physiol 192:1–12

    Article  CAS  PubMed  Google Scholar 

  • Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12(1):31–38

    Article  CAS  Google Scholar 

  • Aswani R, Jishma P, Radhakrishnan EK (2020) Endophytic bacteria from the medicinal plants and their potential applications. In: Kumar A, Singh VK (eds) Microbial endophytes: prospects for sustainable agriculture. Woodhead Publishing, pp 15–36

    Chapter  Google Scholar 

  • Azevedo JL, MaccheroniJr W, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16

    Article  Google Scholar 

  • Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Banchio E, Bogino PC, Santoro M, Torres L, Zygadlo J, Giordano W (2010) Systemic induction of monoterpene biosynthesis in Origanummajoricum by soil bacteria. J Agric Food Chem 58:650–654

    Article  CAS  PubMed  Google Scholar 

  • Beiranvand M, Amin M, Hashemi-Shahraki A, Romani B, Yaghoubi S, Sadeghi P (2017) Antimicrobial activity of endophytic bacterial populations isolated from medical plants of Iran Iranian. J Microbiol 9(1):11–18

    Google Scholar 

  • Berg G, Mahnert A, Moissl-Eichinger C (2014) Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Springer, Berlin, pp 53–69

  • Bhuvaneswari S, Madhavan S, Panneerselvam A (2013) Enumeration of endophytic bacteria from Solanumtrilobatum L. World J Pharm Res 3:2270–2279

    Google Scholar 

  • Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FM, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10:175–188

    Article  CAS  PubMed  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochem 70:1876–1893

    Article  Google Scholar 

  • Bonilla A, Sarria ALF, Algar E, Ledesma FM, Solano BR, Fernandes JB, Mañero FG (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaversomniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes BH (1990) Environmental effects of N fertilizer use-an overview. Fertilizer Res 26:209–221

    Article  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300

    Article  CAS  PubMed  Google Scholar 

  • Castillo UF, Browne L, Strobel G, Hess WM, Ezra S, Pacheco G, Ezra D (2007) Biologically active endophytic Streptomycetes from Nothofagus spp. and other plants in Patagonia. Microb Ecol 53:12–19

    Article  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J8(4):790–803

    Article  Google Scholar 

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29(3):328–337

    Article  Google Scholar 

  • Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Chithra S, Jasim B, Anisha C, Mathew J, Radhakrishnan EK (2014) LC-MS/MS based identification of piperine production by endophyticMycosphaerella sp. PF13 from Piper nigrum. Appl Biochem Biotechnol 173:30–35

    Article  CAS  PubMed  Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54(2):341–351

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary K, Sharma S (2020) Plant growth promotion and biocontrol potential of fungal endophytes in the inflorescence of Aloe vera L. Proc Natl Acad Sci India Sec B Biol Sci 90:1–11

    Google Scholar 

  • Chung EJ, Park JA, Pramanik P, Bibi F, Jeon CO, Chung YR (2013) Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima. Int J Syst Evol Microbiol 63:2277–2281

    Article  CAS  PubMed  Google Scholar 

  • Chun-Yan S, Qian-Liang M, Rahman K, Ting H, Lu-Ping Q (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13:163–182

    Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TT, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44(5):377–386

    Article  CAS  PubMed  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreno MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Yu B, Xu Z, Yuan S (2003) Effect of environmental factors on the growth and fatty acid composition of five endophytic fungi from Sapiumsebiferum. J Appl Ecol 14:1525–1528

    CAS  Google Scholar 

  • Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, Mishra VK, Sharma DK (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    Article  CAS  Google Scholar 

  • Daud NS, Rosli MA, Azam ZM, Othman NZ, Sarmidi MR (2019) Paenibacilluspolymyxa bioactive compounds for agricultural and biotechnological applications. Biocatal Agric Biotechnol 18:101092

    Article  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Tala A, Mucciarelli M, Groudeva VI, De Stefano M (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841

    Article  PubMed  Google Scholar 

  • Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC (2014) Capsaicin production by Alternariaalternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochem 98:183–189

    Article  CAS  Google Scholar 

  • Diale MO, Ubomba-Jaswa E, Serepa-Dlamini MH (2018) The antibacterial activity of bacterial endophytes isolated from Combretummolle. Afr J Biotechnol 17:255–262

    Article  CAS  Google Scholar 

  • Ding CH, Wang QB, Guo S, Wang ZY (2018) The improvement of bioactive secondary metabolites accumulation in RumexgmeliniTurcz through co-culture with endophytic fungi. Braz J Microbiol 49:362–369

    Article  CAS  PubMed  Google Scholar 

  • Dojima T, Craker LE (2016) Potential benefits of soil microorganisms on medicinal and aromatic plants. In ACS symposium seriesamerican chemical society, vol 1218, pp 75–90

  • Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208:1227–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Tiezzi A (2019) Medically important plant biomes: source of secondary metabolites, vol 15. Springer, Singapore

    Book  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov SZ, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soil 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Behrendt U, Ahmad P, Berg G (2017a) Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front Microbiol 8:1–11

    Article  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017b) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF (2017c) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicerarietinum L.) and induce suppression of root rot caused by Fusariumsolani under salt stress. Front Microbiol 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic Gram-positive bacteria. Front Microbiol 10:463

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64

    Article  CAS  Google Scholar 

  • El-Hawary SS, Mohammed R, AbouZid SF, Bakeer W, Ebel R, Sayed AM, Rateb ME (2016) Solamargine production by a fungal endophyte of Solanumnigrum. J Appl Microbiol 1201:143–150

    Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184(1):39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdogan O, Benlioglu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control 53:39–45

    Article  Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    Article  CAS  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Etalo DW, Jeon JS, Raaijmakers JM (2018) Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 35:398–409

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Alikhani HA (2017) Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryza sativa L.) pathogens. Eur J Plant Pathol 147:7–14

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Amsterdam, pp 153–188

    Chapter  Google Scholar 

  • Fikri ASI, Rahman IA, Nor NSM (1940) Hamzah A (2018) Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi. AIP Conf Proc 1:020072

    Google Scholar 

  • Frank A, Saldierna-Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:E70

    Article  PubMed  Google Scholar 

  • Fu Y, Yin ZH, Yin CY (2017) Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17–7 isolated from Panax ginseng. J Appl Microbiol 122:1579–1585

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleumpratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, Zhao Y, Yang H, Zhao X, Zhang L (2015) An endophytic bacterium isolated from Panax ginseng CA Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138

    Article  CAS  Google Scholar 

  • Ghadin N, Zin NM,Sabaratnam V, Badya N, Basri DF, Lian HH, Sidik NM (2008) Isolation and characterization of a novel endophyticStreptomyces SUK 06 with antimicrobial activity from Malaysian plant. Asian J Plant Sci

  • Gond SK, Bergen MS, Torres MS, WhiteJr JF (2015) EndophyticBacillus spp. produces antifungal lipopeptides and induce host defense gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gosal S, Karlupia A, Gosal S, Chhibba I, Varma A (2010) Biotization with Piriformosporaindica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta H, Saini RV, Pagadala V, Kumar N, Sharma DK, Saini AK (2016) Analysis of plant growth promoting potential of endophytes isolated from Echinacea purpurea and Lonicera japonica. J Soil Sci Plant Nutr 16:558–577

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodrıguez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hansson D, Wubshet S, Olson A, Karlsson M, Staerk D, Broberg A (2014) Secondary metabolite comparison of the species within the Heterobasidion annosum sl complex. Phytochem 108:243–251

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2:43–55

    CAS  Google Scholar 

  • Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170

    Article  Google Scholar 

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16:316–329

    Article  PubMed  Google Scholar 

  • Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Cont 54:359–365

    Article  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16

  • Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y (2011) Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07–0460T. J Antibiot 64:303–307

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthusroseus under water deficit stress. Colloids Surf B 60:7–11

    Article  CAS  Google Scholar 

  • Jalgaonwala R, Mahajan R (2014) A review on microbial endophytes from plants: a treasure search for biologically active metabolites. Glob J Res Med Plants Indigen Med 3:263

    Google Scholar 

  • Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. Biotech 4(2):197–204

    CAS  Google Scholar 

  • Jha Y (2019) Endophytic bacteria mediated regulation of secondary metabolites for the growth induction in Hyptissuaveolens under stress. Medically important plant biomes: source of secondary metabolites. Springer, Singapore, pp 277–292

    Chapter  Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng C, Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65(3):565–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZK, Tuo L, Huang DL, Osterman IA, Tyurin AP, Liu SW, Lukyanov DA, Sergiev PV, Dontsova OA, Korshun VA, Li FN (2018) Diversity, novelty, and antimicrobial activity of endophyticactinobacteria from mangrove plants in Beilun Estuary National Nature Reserve of Guangxi. China Front Microbiol 9:868

    Article  PubMed  Google Scholar 

  • Joshi RD, Kulkarni NS (2016) Optimization studies on L-asparaginase production from endophytic bacteria. Int J Appl Res 2:624–629

    Google Scholar 

  • Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh (foxglove) as a novel source of digoxin: a cardiac glycoside. Biotech 3:335–340

    Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kerkeb L, Connoly E (2006) Iron transport and metabolism in plants. Genet Eng 27:119–140

    Article  CAS  Google Scholar 

  • Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322(1):197–207

    Article  CAS  Google Scholar 

  • Kiewert C, Kumar V, Hildmann O, Hartmann J, Hillert M, Klein J (2008) Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res 27:143–150

    Article  Google Scholar 

  • Kim H, Mohanta TK, Park YH, Park SC, Shanmugam G, Park JS, Jeon J, Bae H (2020) Complete genome sequence of the mountain-cultivated ginseng endophyte Burkholderiastabilis and its antimicrobial compounds against ginseng root rot disease. Biol Cont 140:104126

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes. Springer, Berlin, pp 33–52

  • Kumar A, Singh R, Giri DD, Singh PK, Pandey KD (2014) Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). Int J Curr Microbiol App Sci 3:275–283

    Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65(3):1391–1399

    Article  CAS  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) Anendophytic fungus from Azadirachtaindica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochem 91:81–87

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Kusari P, Gottfried S, Zühlke S, Louven K, Hentschel U, Kayser O, Spiteller M (2014) Endophytes are hidden producers of maytansine in Putterlickia roots. J Nat Prod 77:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha RK, Singh S, Pandey SS, Rao DV, Nagegowda DA, Kalra A, Babu CSV (2019) Compatibility of inherent fungal endophytes of Withania somnifera with Trichoderma viride and its impact on plant growth and withanolide content. J Plant Growth Reg 38:1228–1242

    Article  CAS  Google Scholar 

  • Lacava PT, Li W, Araujo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol Seoul 45:388

    CAS  Google Scholar 

  • Larkin RP, Tavantzis S (2013) Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am J Potato Res 90:261–270

    Article  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS ONE 7:e51410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Sarotti AM, Yoshida W, Cao S (2018a) Two new polyketides from Hawaiian endophytic fungus Pestalotiopsis sp. FT172. Tetrahedron Lett 59(1):42–45

    Article  CAS  Google Scholar 

  • Li L, Mohamad OAA, Ma J, Friel AD, Su Y, Wang Y, Musa Z, Liu Y, Hedlund BP, Li W (2018b) Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111:1735–1748

    Article  PubMed  Google Scholar 

  • Li X, Zhou J, Xu RS, Meng MY, Yu X, Dai CC (2018c) Auxin, cytokinin, and ethylene involved in rice n availability improvement caused by endophyte Phomopsis liquidambari. J Plant Growth Regul 37(1):128–143

    Article  CAS  Google Scholar 

  • Liu B, Huang L, Buchenauer H, Kang Z (2010a) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochem Physiol 98(2):305–311

    Article  CAS  Google Scholar 

  • Liu X, Jia J, Atkinson S, Cámara M, Gao K, Li H, Cao J (2010b) Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J Microbiol Biotechnol 26(8):1465–1471

    Article  Google Scholar 

  • Liu X, Dou G, Ma Y (2016a) Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J Gen Plant Pathol 82:165–173

    Article  Google Scholar 

  • Liu YH, Guo JW, Salam N, Li L, Zhang YG, Han J, Mohamad OA, Li WJ (2016b) Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. Biotech 6(2):209–209

    CAS  Google Scholar 

  • Liu Y, Guo J, Li L, Asem MD, Zhang Y, Mohamad OAA, Salam N, Li W (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis K. M. Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9:432–445

    Article  Google Scholar 

  • Lòpez-Fernàndez S, Compant S, Vrhovsek U, Bianchedi PL, Sessitsch A, Pertot I, Campisano A (2016) Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways. Plant Soil 405:177–177

    Article  Google Scholar 

  • Lu Y, Ye C, Che J, Xu X, Shao D, Jiang C, Liu Y, Shi J (2019) Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microb Cell Fact 18:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma W, Brenner D, Wang Z, Dauber B, Ehrhardt C, Högner K, Herold S, Ludwig S, Wolff T, Yu K, Richt JA, Planz O, Pleschka S (2010) The NS Segment of an H5N1 highly pathogenic Avian Influenza Virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. J Virol 84(4):2122–2133

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Anton Leeuw 103(2):299–312

    Article  Google Scholar 

  • Maehara S, Simanjuntak P, Maetani Y, Kitamura C, Ohashi K, Shibuya H (2013) Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce Cinchona alkaloids. J Nat Med 67:421–423

    Article  CAS  PubMed  Google Scholar 

  • Mahender A, Swamy BP, Anandan A, Ali J (2019) Tolerance of iron deficient and toxic soil conditions in rice. Plants 8:31

    Article  CAS  PubMed Central  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Maloy OC (1993) Plant disease control: principles and practice. Wiley

    Google Scholar 

  • Mansoor F, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Matsumoto A, Takahashi Y (2017) Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot 70:514–519

    Article  CAS  Google Scholar 

  • Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan MJ, Maximova SN (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp: exploiting bacterial traits for crop protection. Anton Leeuw Int J G 92(4):367–389

    Article  Google Scholar 

  • Miller KI, Qing C, Sze DMY, Roufogalis BD, Neilan BA (2012) Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb Ecol 64:431–449

    Article  PubMed  Google Scholar 

  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694. https://doi.org/10.1093/jxb/ert342

    Article  CAS  PubMed  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280. https://doi.org/10.1007/s11274-013-1451-9

    Article  CAS  PubMed  Google Scholar 

  • Mir RA, Kaushik SP, Chowdery RA, Anuradha M (2015) Elicitation of forskolin in cultures of Rhizoctonia bataticola—a phytochemical synthesizing endophytic fungi. Int J Pharm Pharmaceut Sci 7:10

    Google Scholar 

  • Mishra A, Singh SP, Mahfooz S, Bhattacharya A, Mishra N, Shirke PA, Nautiyal CS (2018) Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiol Res 212–213:17–28. https://doi.org/10.1016/j.micres.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  • Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ (2018) Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol 9:924. https://doi.org/10.3389/fmicb.2018.00924

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamad OAA, Ma JB, Liu YH, Li L, Hatab S, Li WJ (2019) Medicinal plant-associated microbes as a source of protection and production of crops. Medically important plant biomes: source of secondary metabolites. Springer, Singapore, pp 239–263

    Chapter  Google Scholar 

  • Mohamad OAA, Ma JB, Liu YH, Zhang D, Hua S, Bhute S, Hedlund BP, Li WJ, Li L (2020) Beneficial endophytic bacterial populations associated with medicinal plant Thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Front Plant Sci 11:47

    Article  Google Scholar 

  • Morsy N (2014) Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chem 13(1):7–21

    Article  CAS  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbac A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulongoy K, Gianinazzi S, Roger PA, Dommergues Y (1991) Biofertilizers: agronomic and environmental impacts, and economics. In: Da Silva EJ, Ratledge C, Sasson A (eds) Biotechnology: economic and social aspects. Cambridge University Press, Cambridge, pp 55–69

    Google Scholar 

  • Musa Z, Ma J, Egamberdieva D, Mohamad OAA, Abaydulla G, Liu Y, Li WJ, Li L (2009) Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Front Microbiol 11:191

    Article  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Naragani K, Mangamuri U, Muvva V, Poda S, Munaganti RK (2016) Antimicrobial potential of Streptomyces cheonanensis VUK-A from mangrove origin. Int J Pharm Pharm Sci 8:53–57

    CAS  Google Scholar 

  • Nautiyal J, Christian M, Parker MG (2013) Distinct functions for RIP140 in development, inflammation and metabolism. Trends Endocrinol Metabol 24(9):451–459

    Article  CAS  Google Scholar 

  • Niessen N, Soppa J (2020) Regulated iron siderophore production of the halophilic Archaeon Haloferax volcanii. Biomol 10:1–17. https://doi.org/10.3390/biom10071072

    Article  CAS  Google Scholar 

  • Olasehinde TA, Olaniran AO, Okoh AI, Koulen P (2017) Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Mol 22(3):480

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270. https://doi.org/10.1016/j.jip.2008.01.010

    Article  CAS  PubMed  Google Scholar 

  • Palem PPC, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 10:e0144476. https://doi.org/10.1371/journal.pone.0144476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan F, Su X, Hu B, Yang N, Chen Q, Wu W (2015) Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine- 3β-d-glucoside. Fitoterapia 103:213–221

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Su TJ, Cai SM, Wu W (2017) Fungal endophyte derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7(1):1–14

    Google Scholar 

  • Pan SY, Zhou SF, Gao SH, Yu, ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM (2013) New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. In: Evidence-based complementary and alternative medicine

  • Pandey SS, Singh S, Babu CV, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6(1):1–14

    Article  Google Scholar 

  • Park YH, Mishra RC, Yoon S, Kim H, Park C, Seo ST, Bae H (2019) Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res 43:408–420

    Article  PubMed  Google Scholar 

  • Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR, Chavadar MS, Shouche YS (2014) Description of Micrococcus aloeverae sp. Nov., an endophytic actinobacterium isolated from Aloe vera. Int J Syst Evol Microbiol 64(10):3427–3433

    Article  PubMed  Google Scholar 

  • Pratiwi RH, Hanafi M, Artanti N, Pratiwi RD (2018) Bioactivity of antibacterial compounds produced by endophytic actinomycetes from Neesia altissima. J Trop Life Sci 8(1):228144

    Article  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510. https://doi.org/10.1016/j.jbiotec.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  • Qawasmeh A, Obied HK, Raman A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. J Agric Food Chem 60:3381–3388. https://doi.org/10.1021/jf204105k

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Wang E, Xing M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotechnol 28:2257–2265

    Article  PubMed  Google Scholar 

  • Qian YX, Kang JC, Luo YK, Zhao JJ, He J, Geng K (2016) A bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr Microbiol 73:280–286

    Article  CAS  PubMed  Google Scholar 

  • Qu H, Zhang Y, Wang Y, Li B, Sun W (2008) Antioxidant and antibacterial activity of two compounds (forsythiaside and forsythin) isolated from Forsythia suspensa. J Pharm Pharmacol 60:261–266. https://doi.org/10.1211/jpp.60.2.0016

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Lee IJ (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman W, Prince MA, Haque E, Sultana F, West HM, Rahman M, Mondol M, Akanda AM, Rahman M, Clarke ML, Islam M (2018) Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth. Z Naturforschung C 73:5–6

    Google Scholar 

  • Raio A, Puopolo G, Cimmino A, Danti R, Rocca Della G (2011) Evidente A biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biol Control 58:133–138

    Article  CAS  Google Scholar 

  • Rajani P, Aiswarya H, Vasanthakumari MM, Jain SK, Bharate SB, Rajasekaran C, Ravikanth G, Uma Shaanker R (2019) Inhibition of the collar rot fungus, Sclerotium rolfsii Sacc. by an endophytic fungus Alternaria sp.: implications for biocontrol. Plant Physiol Rep 24:521–532. https://doi.org/10.1007/s40502-019-00484-6

    Article  CAS  Google Scholar 

  • Rajesh PS, Ravishankar Rai V (2014) Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol Res 169:561–569. https://doi.org/10.1016/j.micres.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927. https://doi.org/10.1111/1462-2920.12075

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24. https://doi.org/10.7831/ras.3.1

    Article  Google Scholar 

  • Roze LV, Chanda A, Linz JE (2011) Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 48:35–48

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Singh S, Gupta AR, Gupta A, Singh UB, Manzar N, Bhowmik A, Singh HV, Saxena AK (2020) Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control 150:104353. https://doi.org/10.1016/j.biocontrol.2020.104353

    Article  CAS  Google Scholar 

  • Santhanam R, Groten K, Meldau DG, Baldwin IT (2014) Analysis of plant-bacteria interactions in their native habitat: bacterial communities associated with wild tobacco are independent of endogenous jasmonic acid levels and developmental stages. PLoS ONE 9:e94710. https://doi.org/10.1371/journal.pone.0094710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders M, Kohn LM (2008) Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize. Appl Environ Microbiol 74:136–142. https://doi.org/10.1128/AEM.01538-07

    Article  CAS  PubMed  Google Scholar 

  • Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact 22:1032–1037. https://doi.org/10.1094/MPMI-22-8-1032

    Article  CAS  PubMed  Google Scholar 

  • Schilirò E, Ferrara M, Nigro F, Mercado-Blanco J (2012) Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7. PLoS ONE 7:e48646. https://doi.org/10.1371/journal.pone.0048646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283. https://doi.org/10.1017/S0953756299008540

    Article  Google Scholar 

  • Seca AML, Pinto DCGA (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1):263

    Article  PubMed Central  Google Scholar 

  • Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67:321–331. https://doi.org/10.1007/s13213-017-1263-5

    Article  CAS  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants—new avenues for phytochemicals. J Phytol J Phytol 2:91–100

    Google Scholar 

  • Seo WT, Lim WJ, Kim EJ, Yun HD, Lee YH, Cho KM (2010) Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. J Appl Biol Chem 53:493–503. https://doi.org/10.3839/jksabc.2010.075

    Article  CAS  Google Scholar 

  • Shahzad SM, Arif MS, Ashraf,M, Abid M, Ghazanfar MU, Riaz M, Yasmeen T, Zahid MA (2015) Alleviation of abiotic stress in medicinal plants by PGPR. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Soil biology, vol 42. Springer, Switzerland, pp 135–166.

  • Sharma D, Gahtyari NC, Chhabra R, Kumar D (2020) Role of microbes in improving plant growth and soil health for sustainable agriculture. Springer, Singapore, pp 207–256

    Google Scholar 

  • Shayganni E, Bahmani M, Asgary S, Rafieian-Kopaei M (2016) Inflammaging and cardiovascular disease: management by medicinal plants. Phytomedicine 23:1119–1126. https://doi.org/10.1016/j.phymed.2015.11.004

    Article  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247. https://doi.org/10.1074/jbc.M500447200

    Article  CAS  PubMed  Google Scholar 

  • Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:1–18. https://doi.org/10.1038/srep43991

    Article  CAS  Google Scholar 

  • Silva CF, Vitorino LC, Mendonça MAC, Araújo WL, Dourado MN, Albuquerque LC, Soares MA, Souchie EL (2020) Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. South African J Bot 134:3–16. https://doi.org/10.1016/j.sajb.2019.09.019

    Article  CAS  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria. Resonance 18:275–281

    Article  Google Scholar 

  • Singh D, Prasanna R (2020) Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron Sustain Dev 40:1–21

    Article  CAS  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2017a) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Article  Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017b) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416:107–116. https://doi.org/10.1007/s11104-017-3189-x

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK (2018) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield and micronutrient content. Ann Microbiol 68(12):815–833

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Saxena AK (2020) Performance of low and high Fe accumulator wheat genotypes grown on soils with low or high available Fe and endophyte inoculation. Acta Physiol Plant 42(2):24. https://doi.org/10.1007/s11738-019-2997-4

    Article  CAS  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:585–597. https://doi.org/10.1002/jobm.201200564

    Article  CAS  PubMed  Google Scholar 

  • Song M, Yun HY, Kim YH (2014) Antagonistic bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38:136–145. https://doi.org/10.1016/j.jgr.2013.11.016

    Article  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by taxomyces andreanae, an endophytic fungus of Pacific yew. Science 80(260):214–216. https://doi.org/10.1126/science.8097061

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the pacific yew, taxus brevifolia1. J Nat Prod 58:1315–1324. https://doi.org/10.1021/np50123a002

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Hess WM (1997) Glucosylation of the peptide leucinostatin a, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity. Chem Biol 4:529–536. https://doi.org/10.1016/S1074-5521(97)90325-2

    Article  CAS  PubMed  Google Scholar 

  • Suresh A, Pallavi P, Srinivas P, Kumar VP, Chandra SJ, Reddy SR (2010) Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants. Afr J Microbiol Res 4:1491–1494

    CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202. https://doi.org/10.1139/W07-082

    Article  CAS  PubMed  Google Scholar 

  • Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS, Correspondence F (2012) Antifungal activity of 3-methylcarbazoles from Streptomyces sp. LJK109; an endophyte in Alpinia galanga. J Appl Pharm Sci 2012:255820

    Google Scholar 

  • Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS (2013) Antibacterial activity of Decursin from Streptomyces sp. GMT-8; an endophyte in Zingiber officinale Rosc. Article info abstract. J Appl Pharm Sci 3:74–078. https://doi.org/10.7324/JAPS.2013.31012

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505. https://doi.org/10.1128/AEM.71.12.8500-8505.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Lu X, Mai W, Yang X, Li S (2008) Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants. Soils 40:425–431

    CAS  Google Scholar 

  • Tian Y, Amand S, Buisson D, Kunz C, Hachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 108:95–101. https://doi.org/10.1016/j.phytochem.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Rana CS (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3(5):661–670

    Google Scholar 

  • Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60:167–171. https://doi.org/10.1007/s00284-009-9520-x

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Awasthi A, Mall M, Shukla AK, Srinivas KS, Syamasundar KV, Kalra A (2013) Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crops Prod 43:306–310

    Article  CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. https://doi.org/10.1016/j.plaphy.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Trapp MA, Kai M, Mithöfer A, Rodrigues-Filho E (2015) Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochem 110:72–82. https://doi.org/10.1016/j.phytochem.2014.11.005

    Article  CAS  Google Scholar 

  • Usai S, Grazzi L, Bussone G (2011) Gingkolide B as migraine preventive treatment in young age: results at 1-year follow-up. Neurol Sci. https://doi.org/10.1007/s10072-011-0522-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67. https://doi.org/10.3389/fenvs.2014.00067

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed Central  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565. https://doi.org/10.1007/s12275-010-0082-1

    Article  CAS  PubMed  Google Scholar 

  • Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell Plant Prot J 10:51–66

    Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange AC (2009) Endophytic actinomycetes from azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756. https://doi.org/10.1007/s00248-008-9450-3

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    Article  CAS  Google Scholar 

  • Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, De los Santos-Villalobos S (2018) El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Rev Mex Fitopatol Mex J Phytopathol 36:95–130. https://doi.org/10.18781/r.mex.fit.1706-5

    Article  Google Scholar 

  • Vora SC, Gujar KN (2013) Vinpocetine: hype, hope and hurdles towards neuroprotection. Asian J Pharm Res Dev 17–23

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dai CC, Cao JL, Xu DS (2012) Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World J Microbiol Biotechnol 28:575–584. https://doi.org/10.1007/s11274-011-0850-z

    Article  PubMed  Google Scholar 

  • Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341. https://doi.org/10.1007/s00284-013-0482-7

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tian J, Li X, Gan L, He L, Chu Y, Tian Y (2018) Streptomyces dioscori sp. nov., a novel endophytic actinobacterium isolated from bulbil of Dioscorea bulbifera L. Curr Microbiol 75:1384–1390. https://doi.org/10.1007/s00284-018-1534-9

    Article  CAS  PubMed  Google Scholar 

  • Wani MC, Taylor HL, Wall ME, Coggon P, Mcphail AT (1971) Plant antitumor agents.VI.The isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus brevifolia2. J Am Chem Soc 93:2325–2327. https://doi.org/10.1021/ja00738a045

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Webster G, Mullins AJ, Cunningham-Oakes E, Renganathan A, Aswathanarayan JB, Mahenthiralingam E, Vittal RR (2020) Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa147

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicaksono WA, Jones EE, Casonato S, Monk J, Ridgway HJ (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control 116:103–112. https://doi.org/10.1016/j.biocontrol.2017.03.003

    Article  Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340

    CAS  PubMed  Google Scholar 

  • Yang T, Ma S, Dai CC (2014) Drought degree constrains the beneficial effects of a fungal endophyte on Atractylodes lancea. J Appl Microbiol 117:1435–1449. https://doi.org/10.1111/jam.12615

    Article  CAS  PubMed  Google Scholar 

  • You X, Feng S, Luo S, Cong D, Yu Z, Yang Z, Zhang J (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85:161–168. https://doi.org/10.1016/j.fitote.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  • Yuan JI, Jian-Nan BI, Bing YAN, Xu-Dong Z (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22:1–6

    Article  CAS  Google Scholar 

  • Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from taxus media, cladosporium cladosporioides MD2. Curr Microbiol 59:227–232. https://doi.org/10.1007/s00284-008-9270-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168. https://doi.org/10.2174/138955711794519492

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu ZL, Chen DL (2002) Nitrogen fertilizer use in China—contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosystems 63:117–127. https://doi.org/10.1023/A:1021107026067

    Article  CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao saltern on the coast of yellow sea of China. Evidence-based complement. Altern Med. https://doi.org/10.1155/2011/615032

    Article  Google Scholar 

  • Zhu L, Xin K, Chen C, Li C, Si M, Zhao L, Shi X, Zhang L, Shen X (2015) Sphingobium endophyticus sp. nov., isolated from the root of Hylomecon japonica. Antonie Van Leeuwenhoek. Int J Gen Mol Microbiol 107:1001–1008. https://doi.org/10.1007/s10482-015-0392-8

    Article  CAS  Google Scholar 

  • Zikmundová M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870. https://doi.org/10.1128/AEM.68.10.4863-4870.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICAR-CAZRI, Jodhpur , Rajasthan for their valuable support during this study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

DS and NG prepared the initial draft of the review. HM, ST, DK helped with drafting and editing. SKS helped in final review & editing. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Devendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent to participate

Not applicable.

Consent for publication

Consent was obtained from all the individual participants included in the study. All the authors have read and approved the manuscript.

Ethical approval

The publications does not include results of studies involving humans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Thapa, S., Mahawar, H. et al. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 115, 699–730 (2022). https://doi.org/10.1007/s10482-022-01736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01736-6

Keywords

Navigation