Skip to main content
Log in

Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Endophytes play an important role in protection of host plants from infection by phytopathogens. Endophytic bacteria were isolated from five different parts (root, stem, petiole, leaf and seed) of Panax notoginseng and evaluated for antagonistic activity against Fusarium oxysporum, Ralstonia sp. and Meloidogyne hapla, three major pathogens associated with root-rot disease complex of P. notoginseng. From 1000 endophytic bacterial strains evaluated in vitro, 104 strains exhibited antagonistic properties against at least one of these three pathogens. Phylogenetic analyses of their 16S rRNA gene sequences showed that these 104 antagonistic bacteria belong to four clusters: Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. Members of the Firmicutes, in particular the Bacillus spp., were predominant in all analyzed tissues. The root was the main reservoir for antagonistic bacteria. Of the 104 antagonists, 51 strains showed antagonistic activities to one pathogen only, while 43 and 10 displayed the activities towards two and all three pathogens, respectively. The most dominant species in all tissues were Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus, which were represented by eight strains with broad antagonistic spectrum to the all three test pathogens of root-rot disease complex of P. notoginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • An N (2006) Studies on fruit development and seed after-ripening characteristics of Panax notoginseng. Dissertation, Yunnan Agricultural University

  • Araujo WL, Marcon J, Maccheroni W Jr, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Let Appl Microbiol 48:58–64

    Article  CAS  Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advance on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Back MA, Haydock PPJ, Jenkinson P (2002) Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51:683–697

    Article  Google Scholar 

  • Baermann G (1917) Eine eifache methode zur auffindung von anklyostomum (Nematoden) larven in Erdproben. Geneesk. Tijdschr. Ned.-Indie 57:131–137

    Google Scholar 

  • Becerra-Castro C, Kidd PS, Prieto-Fernandez A, Weyens N, Maria-Jose A, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization. Plant Soil 340:13–433

    Article  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora R, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chen YJ, Wang YY, Feng GQ, Li ZY (2001) Relationship between root rot of Panax notoginseng and ecological conditions. Yunnan Agric Sci Technol 6:33–35 (in Chinese)

    Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    Article  PubMed  CAS  Google Scholar 

  • Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KW (2003) Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 51:4617–4623

    Article  PubMed  CAS  Google Scholar 

  • Elvira-Recuenco M, van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  PubMed  CAS  Google Scholar 

  • Guo HB, Cui XM, An N, Cai GP (2006) Sanchi ginseng (Panax notoginseng (Burkill) F. H. Chen) in China: distribution, cultivation and variations. Genet Resour Crop Evol 57:453–460

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodriguez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hu X, Fang Q, Li S, Wu J, Chen J (2009) Isolation and characterization of endophytic and rhizosphere bacterial antagonists of soft rot pathogen from Pinellia ternata. FEMS Microbiol Lett 295:10–16

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskayal OI, Gorshkoval NM, Mikhailovl VV, Yumota N, Shigeri Y, Taguchi T, Yoshikawa S (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271

    PubMed  CAS  Google Scholar 

  • Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward M, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophyies. Marcel Dekker, New York, pp 199–233

    Google Scholar 

  • Krid S, Rhouma A, Mogou I, Quesada JM, Nesme X, Gargouri A (2010) Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas florescens and Bacillus subtilis. J Plant Pathol 92:335–341

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Li YH, Zhu JN, Zhai ZH, Zhang QA (2010) Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84–93

    PubMed  CAS  Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, Mc-Caughey MJ, Woese CR (1997) The RDP (ribosomal database project). Nucleic Acids Res 25:109–110

    Article  PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp in agricultural systems. Phytopathol 94:1252–1258

    Article  CAS  Google Scholar 

  • Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Article  Google Scholar 

  • Miao ZQ, Li SD, Liu XZ, Chen YJ, Li YH, Wang Y, Xia ZY, Zhang KQ (2006) The causal microorganisms of Panax notoginseng root rot disease. Scientia Agricultura Sinica 39:1371–1378

    Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  PubMed  CAS  Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur J Plant Pathol 101:665–672

    Article  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Eco 43:555–566

    Article  CAS  Google Scholar 

  • Rodrigues KF (1994) The foliar endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Ryan RP, Germain K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Saeed IAM, MacGuidwin AE, Rouse DI (1998) Effect of initial nematode population density on the interaction of Pratylenchus penetrans and Verticillium dahliae on Russet Burbank potato. J. Nematol 30:100–107

    PubMed  CAS  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Myco Res 97:1447–1450

    Article  Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V, Tongmin Sa (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 61–96

    Chapter  Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sun JH, Ma N, Chen ZJ, Wang CL, Cui XM (2004) Effects of root rot on saponin content in Panax notoginseng. J Chin medicinal mater 27:79–80 (in Chinese)

    Google Scholar 

  • Sun HX, Qin F, Ye YP (2005) Relationship between haemolytic and adjuvant activity and structure of protopanaxadiol-type saponins from the roots of Panax notoginseng. Vaccine 23:533–5542

    Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2007) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgens DG (1997) The Clustal X windows interface, flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  Google Scholar 

  • Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Cui XM, Li ZY, He CF, Yu SF, Luo WF (1998) Studies on relationship between root rot on Panax notoginseng Burk. F. H. Chen and its environmental conditions. Chin J Chin Materia Medica 23:714–716 (in Chinese)

    CAS  Google Scholar 

  • Wang Y, Lu ZX, Wu H, Lv FX (2009) Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol 136:71–74

    Article  PubMed  CAS  Google Scholar 

  • Wei JX, Du YC (1996) Modern Science Research and Application of Panax notoginseng. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  • Wheeler TA, Hake KD, Dever JK (2000) Survey of Meloidogyne incognita and Thielaviopsis basicola: their impact on cotton fruiting and producers management choices in infested fields. J Nematol 32:576–583

    PubMed  CAS  Google Scholar 

  • Yin XT, Xu LN, Xu L, Fan SS, Liu ZY, Zhang XY (2011) Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms. Afr J Microbiol Res 5:340–345

    Google Scholar 

  • Yun Z, Xia ZY, Li YH (2006) Measures of integrated control of root rot complex of continuous cropping Panax notoginseng and their control efficacy. Acta Agri culturae Shanghai 22:63–68

    Google Scholar 

  • Zheng LJ, LI GH, Wang XB, Pan WZ, Li L, Lv H, Liu FF, Dang LZ, Mo MH, Zhang KQ (2008) Nematicidal endophytic bacteria obtained from plants. Ann Microbiol 58:569–572

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded jointly by National Basic Research Program of China (2012CB710406), National Key Sciences and Technology Program for Water Solutions (2012ZX07102-003), NSFC (31200086, 31260020, 31160376, 30970100), and projects from Department of Science and Technology of Yunnan Province (2011FB003, 2011FA002, 2012EB008, 11N010905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He Mo.

Additional information

Li Ma, Yong Hong Cao: Contributed equally to this Study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Cao, Y.H., Cheng, M.H. et al. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwenhoek 103, 299–312 (2013). https://doi.org/10.1007/s10482-012-9810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9810-3

Keywords

Navigation