Skip to main content
Log in

Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Specific strains of fluorescent Pseudomonas spp. inhabit the environment surrounding plant roots and some even the root interior. Introducing such bacterial strains to plant roots can lead to increased plant growth, usually due to suppression of plant pathogenic microorganisms. We review the modes of action and traits of these beneficial Pseudomonas bacteria involved in disease suppression. The complex regulation of biological control traits in relation to the functioning in the root environment is discussed. Understanding the complexity of the interactions is instrumental in the exploitation of beneficial Pseudomonas spp. in controlling plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AHL:

N-acyl-homoserine lactone

DAPG:

2,4-diacetylphloroglucinol

ISR:

Induced systemic resistance

PCA:

Phenazine-1-carboxylic acid

PGPR:

Plant growth promoting rhizobacteria

SA:

Salicylic acid

SAR:

Systemic acquired resistance

TAD:

Take-all decline

References

  • Acea ML, Alexander M (1988) Growth and survival of bacteria introduced into carbon amended soil. Soil Biol Biochem 20:703–709

    Article  Google Scholar 

  • Adhikari TB, Joseph CM, Yang GP, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    Article  PubMed  CAS  Google Scholar 

  • Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting rhizobacteria: present status and future prospects. Nakanishi Printing, Sapporo, Japan, pp 120–123

    Google Scholar 

  • Alexander DB, Zuberer DA (1993) Responses by iron-efficient and inefficient oat cultivars to inoculation with siderophores-producing bacteria in a calcareous soil. Biol Fert Soils 16:118–124

    Article  CAS  Google Scholar 

  • Ankenbauer RG, Cox CD (1988) Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis. J Bacteriol 170:5364–5367

    PubMed  CAS  Google Scholar 

  • Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an isoxazolidone with siderophore activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. J Nat Prod 58:1786–1789

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77:1093–1100

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1986) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256

    Article  Google Scholar 

  • Bakker PAHM, Schippers B, Weisbeek PJ (1988) Siderophore production by plant growth promoting Pseudomonas spp. J Plant Nutr 11:925–933

    Article  CAS  Google Scholar 

  • Bakker PAHM, van Peer R, Schippers B (1990) Specificity of siderophore receptors and biocontrol by Pseudomonas spp. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford

    Google Scholar 

  • Bakker PAHM, Glandorf DCM, Viebahn M, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, Van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat. Antonie van Leeuwenhoek 81:617–624

    Article  PubMed  CAS  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Barness E, Chen Y, Hadar Y, Marschner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29:107–129

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 10:421–424

    Article  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  PubMed  CAS  Google Scholar 

  • Beale E, Li G, Tan MW, Rumbaugh KP (2006) Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 72:5135–5137

    Article  PubMed  CAS  Google Scholar 

  • Becker JO, Hedges RW, Messens E (1985) Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Appl Environ Microbiol 49:1090–1093

    PubMed  CAS  Google Scholar 

  • Bell CR, Dickie GA, Chan JWYF (1995) Variable response of bacteria isolated from grapevine xylem to control grape crown gal disease in planta. Am J Enol Vit 46:499–508

    Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502

    Article  PubMed  CAS  Google Scholar 

  • Bitter W, Marugg JD, De Weger LA, Tommassen J, Weisbeek PJ (1991) The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Mol Microbiol 5:647–655

    Article  PubMed  CAS  Google Scholar 

  • Blouin-Bankhead S, Landa BB, Lutton E, Weller DM, McSpadden-Gardener BB (2004) Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307–318

    Article  CAS  Google Scholar 

  • Boopathi E, Rao KS (1999) A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochem Biophys Acta 1435:30–40

    PubMed  CAS  Google Scholar 

  • Brand J, Lugtenberg BJJ, Glandorf DCM, Bakker PAHM, Schippers B, de Weger LA (1991) Isolation and characterization of a superior potato root-colonizing Pseudomonas strain. In: Keel C, Knoller B, Défago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS Bull 14, Interlaken, pp 350–354

    Google Scholar 

  • Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Control 4:373–381

    Article  Google Scholar 

  • Bueno P, Soto MJ, Rodríguez-Rosales MP, Sanjuán J, Olivares J, Donaire JP (2001) Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol 152:91–96

    Article  CAS  Google Scholar 

  • Bull CT, Duffy B, Voisard C, Défago G, Keel C, Haas D (2001) Characterization of spontaneous mutants of Pseudomonas fluorescens biocontrol strain CHAO. Antonie van Leeuwenhoek 79:327–336

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Camacho-Carvajal MM, Wijfjes AHM, Mulders IHM, Lugtenberg BJJ, Bloemberg GV (2002) Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization. Mol Plant-Microbe Interact 15:662–671

    Article  PubMed  Google Scholar 

  • Cámara M, Daykin M, Chhabra SR (1998) Detection, purification and synthesis of N-acyl homoserine lactone quorum sensing molecules. Methods Microb Bacterial Pathogen 27:319–330

    Article  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  • Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150:3889–3897

    Article  PubMed  CAS  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    PubMed  CAS  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88

    Article  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodríguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into de growth medium. Mol Plant-Microbe Interact 14:969–979

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant-Microbe Interact 18:244–253

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism an sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    PubMed  CAS  Google Scholar 

  • De Bellis P, Ercolani GL (2001) Growth interactions during bacterial colonization of seedlings rootlets. Appl Environ Microbiol 67:1945–1948

    Article  PubMed  Google Scholar 

  • Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast and foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJJ (1998a) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA 95:7051–7056

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998b) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11:763–771

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. Bacteria. Mol Plant-Microbe Interact 13:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporte grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Interact 19:1406–1419

    Article  PubMed  CAS  Google Scholar 

  • De Weert S, Vermeiren H, Mulders HM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, de Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis toward exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of aplant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    PubMed  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994a) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078

    Article  CAS  Google Scholar 

  • Duijff BJ, De Kogel WJ, Bakker PAHM, Schippers B (1994b) Influence of pseudobactin-358 on the iron nutrition of barley. Soil Biol Biochem 26:1681–1688

    Article  CAS  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp Appl Environ Microbiol 67:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    Article  PubMed  CAS  Google Scholar 

  • Fuchs R, Schäfer M, Geoffroy V, Meyer JM (2001) Siderotyping – a powerful tool for the characterization of pyoverdines. Curr Topics Med Chem 1:31–57

    Article  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbiol Ecol 41:369–383

    CAS  Google Scholar 

  • Gardan L, Cottin S, Bollet C, Hunault G (1991) Phenotypic heterogeneity of Pseudomonas syringae van Hall. Res Microbiol 142:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478

    PubMed  CAS  Google Scholar 

  • Gardner JM, Chandler JL, Feldman AW (1984) Growth promotion and inhibition by antibiotic-producing fluorescent pseudomonads on citrus roots. Plant Soil 77:103–113

    Article  Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their colonization and persistence following treatment of seed potatoes. Phytopathol Z 108:193–206

    Article  Google Scholar 

  • Geels FP, Lamers JG, Hoekstra O, Schippers B (1986) Potato plant response to seed tuber bacterization in the field in various rotations. Neth J Plant Pathol 92:257–272

    Article  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  PubMed  CAS  Google Scholar 

  • Germaine K, Keogh E, García-Cabellos G, Borreans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415

    Article  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma J-W, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  PubMed  CAS  Google Scholar 

  • Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grosch R, Faltin F, Lottman J, Kofoet A, Berg G (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kuhn on lettuce and potato. Can J Microbiol 51:345–353

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek 81:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodríguez-Kabana R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    PubMed  CAS  Google Scholar 

  • Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, Kim YH, Kim YC (2006a) Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis 06. Mol Plant Pathol 7:463–472

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006b) GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis 06 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    Article  PubMed  CAS  Google Scholar 

  • Höfte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego

    Google Scholar 

  • Höfte M, Dong Q, Kourambas S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdine production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14:1011–1020

    Article  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimun-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 77:286–292

    Google Scholar 

  • Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292

    Article  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru CA, Loper JE (1993) Biochemical and genetic analysis of siderophores produced by plant-associated Pseudomonas and Erwinia species. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego

    Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1986) Remedy of lime-induced chlorosis in peanuts by Pseudomonas sp. siderophores. J Plant Nutr 9:535–545

    Article  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1988) Involvement of bacterial siderophores in the remedy of lime-induced chlorosis on peanut. Soil Sci Soc Am J 52:1032–1037

    Article  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbiol 58:119–124

    PubMed  CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 79:584–589

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Koster M, Van de Vossenberg J, Leong J, Weisbeek PJ (1993) Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Mol Microbiol 8:591–601

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271

    Article  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N-2-fixing grass endophyte Azoarcus sp strain BH72. Nat Biotechnol 24:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 14:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Kuklinsky-Sobral HL, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Kuklinsky-Sobral HL, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Kwok OCH, Fahy PC, Hoitink HAJ, Kuter GA (1987) Interactions between bacteria and Trichoderma hamatum in suppression of Rhizoctonia damping-off in bark compost media. Phytopathology 77:1206–1212

    Article  Google Scholar 

  • Lacava PT, Andreote FD, Araujo WL, Azevedo JL (2006) Characterization of the endophytic bacterial community from citrus by isolation, specific PCR and DGGE. Pesquisa Agropecuaria Bras 41:637–642

    Google Scholar 

  • Lam ST (1990) Microbial attributes associated with root colonization. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and diseases. Alan R Liss Inc, New York

    Google Scholar 

  • Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1995b) Biocontrol of fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–1305

    Article  Google Scholar 

  • Leeman M, Den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Pyhtopathology 86:149–155

    Article  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82

    PubMed  CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lifshitz R, Simonson C, Scher FM, Kloepper JW, Rodrick-Semple C, Zaleska I (1986) Effect of rhizobacteria on the severity of Phytophthora root rot of soybean. Can J Plant Pathol 8:102–106

    Article  Google Scholar 

  • Lim HS, Lee JM, Kim SD (2002) A plant growth-promoting Pseudomonas fluorescens GL20: mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J Microbiol Biotechnol 12:249–257

    CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Long HH, Furuya N, Kurose D, Yamamoto I, Takeshita M, Takanami Y (2004) Identification of the endophytic bacterial isolates and their in vitro and in vivo antagonism against Ralstonia solanacearum. J Fac Agric Kyushu Univ 49:233–241

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L). Appl Environ Microbiol 49:416–422

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What make Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:439–446

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains, and role in rhizosphere colonization. Environ Microbiol 1:439–466

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Marschner P, Crowley DE (1998) Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (PVD-INAZ). Soil Biol Biochem 30:1275–1280

    Article  CAS  Google Scholar 

  • Martínez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuán J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Mol Plant-Microbe Interact 11:153–155

    Article  Google Scholar 

  • Martínez-Granero F, Capdevila S, Sánchez-Contreras M, Martín M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151:975–983

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Granero F, Rivilla R, Martín M (2006) Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 72:3429–3434

    Article  PubMed  CAS  Google Scholar 

  • Marugg JD, DdeWeger LA, Nielander HB, Oorthuizen M, Recourt K, Lugtenberg B, van der Hofstad GAJM, Weisbeek PJ (1989) Cloning and characterization of a gene encoding an outer membrane protein required for siderophore uptake in Pseudomonas putida WCS358. J Bacteriol 171:2819–2826

    PubMed  CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Sacherer SP, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopthology 88:678–684

    Article  CAS  Google Scholar 

  • Mavrodi O, Mavrodi DV, Weller DM, Thomashow LS (2006) Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Envrion Microbiol 72:7111–7122

    Article  CAS  Google Scholar 

  • Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61:2554–2559

    PubMed  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • McKhann HI, Paiva NL, Dioxin RA, Hirsute AM (1997) Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol Plant-Microbe Interact 10:50–58

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO. Biofactors 4:23–27

    PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon L, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  PubMed  CAS  Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    Article  PubMed  CAS  Google Scholar 

  • Misko AL, Germida JJ (2002) Taxonomic and functional diversity of pseudomonads isolated from rots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    Article  PubMed  CAS  Google Scholar 

  • Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114

    Article  PubMed  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defágo G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant-Microbe Interact 18:562–569

    Article  PubMed  CAS  Google Scholar 

  • O´Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  CAS  Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    CAS  Google Scholar 

  • Park MS, Jung SR, Lee MS, Kim KO, Do JO, Lee KH, Kim SB, Bae KS (2005) Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 43:219–227

    PubMed  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren QH, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou LW, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  • Pechy-Tarr M, Bottiglieri M, Mathys S, Lejbolle KB, Schnider-Keel U, Maurhofer M, Keel C (2005) RpoN (σ54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 18:260–272

    Article  PubMed  CAS  Google Scholar 

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS III, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974

    PubMed  CAS  Google Scholar 

  • Pierson LS III, Wood DW, Pierson EA (1998) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Verhagen BWM, Ton J, Van Wees SCM, Leon-Kloosterziel KM, Van Loon LC (2003) Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54

    CAS  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate bowing of callus cultures. Physiol Plant 121:305–312

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H, Myllyla R, Hohtola A (2005) Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297

    PubMed  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bitter W, Punte HLM, Bakker PAHM, Weisbeek PJ, Schippers B (1994) Siderophore-receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl Environ Microbiol 60:1184–1190

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995a) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Article  Google Scholar 

  • Raaijmakers JM, Van der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995b) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, De Cock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis and regulation. Mol Plant-Microbe Interact 19:699–710

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Smaiyappan R (2001) Induction of systemic resistance by plant growth-promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramos-González MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187:4033–4041

    Article  PubMed  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005a) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    Article  CAS  Google Scholar 

  • Ran LX, Van Loon LC, Bakker PAHM (2005b) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by cultivation-independent approach. Can J Microbiol 52:140–149

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA- and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257:397–405

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions wit hosts. Mol Plant-Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Contreras M, Martín M, Villacieros M, O’Gara F, Bonilla I, Rivilla R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. Appl Environ Microbiol 184:1587–1596

    Google Scholar 

  • Sarniguet A, Kraus J, Henkels MD, Muehlchen AM, Loper JE (1995) The sigma factor σS affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci USA 92:12255–12259

    Article  PubMed  CAS  Google Scholar 

  • Scher FM, Kloepper JW, Singleton C, Zaleska I, Laliberte M (1988) Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis and generation time. Phytopathology 78:1055–1059

    Article  Google Scholar 

  • Schnider U, Keel C, Blumer C, Troxler J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392

    PubMed  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Visca P, Beyeler M, della Chiesa V, Haas D (1997) Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257

    CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  PubMed  Google Scholar 

  • Seveno NA, Morgan JAW, Wellington EMH (2001) Growth of Pseudomonas aureofaciens PGS12 and the dynamics of HHL and phenazine production in liquid culture, on nutrient agar, and on plant roots. Microb Ecol 41:314–324

    PubMed  CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shoukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Sikora RA (2006) In-planta supressiveness: implications for the biological enhancement of crops and healthy root system. In: Consejería de Agricultura y Agua región de Murcia (eds) Abstracts of the XIII Congress of the Spanish Society of Phytopathology, Murcia, Spain, 18–22 September 2006

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607

    PubMed  CAS  Google Scholar 

  • Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Slininger PJ, Sheawilbur MA (1995) Liquid culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 43:794–800

    Article  PubMed  CAS  Google Scholar 

  • Soto MJ, Sánjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology-SGM 152:3167–3174

    Article  CAS  Google Scholar 

  • Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382

    Article  PubMed  CAS  Google Scholar 

  • Stephens PM, O’Sullivan M, O’Gara F (1987) Influence of bacteriophages on the colonization of strains of Pseudomonas fluorescens in the rhizosphere of sugarbeet. Appl Environ Microbiol 53:1164–1167

    PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Products 67:257–268

    Article  CAS  Google Scholar 

  • Sturz A, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Suslow TV, Schroth MN (1982) Rhizobacteria on sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206

    Article  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1990) Role of antibiotics and siderophores in biocontrol of Take-all disease of wheat. Plant Soil 129:93–99

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Weller DM, Mavrodi DV, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of the phenazine biosynthetic pathway (phzABCDEFG) enhances the efficacy of damping off disease control by Pseudomonas fluorescens 54/96. Mol Plant-Microbe Interact 13:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Timms-Wilson TM, Kilshaw K, Bailey MJ (2004) Risk assessment for engineered bacteria used in biocontrol of fungal disease in agricultural crops. Plant Soil 266:57–67

    Article  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65

    Article  PubMed  CAS  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbial Ecol 36:21–31

    Article  CAS  Google Scholar 

  • Van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders HM, Bloemberg GV, Lugtenberg BJJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant-Microbe Interact 16:1003–1012

    Article  PubMed  Google Scholar 

  • Van den Broek D, Bloemberg GV, Lugtenberg BJJ (2005a) The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ Microbiol 7:1686–1697

    Article  PubMed  CAS  Google Scholar 

  • Van den Broek D, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2005b) Role of RpoS and MutS in phase variation of Pseudomonas sp PCL1171. Microbiology 151:1403–1408

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:553–483

    Google Scholar 

  • Van Peer R, Schippers B (1988) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Article  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    Article  PubMed  CAS  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  Google Scholar 

  • Vasse J, de Billy F, Truchet G (1993) Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566

    Article  Google Scholar 

  • Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380

    Article  PubMed  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  PubMed  CAS  Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM (2000) Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nat Biotechnol 18:779–783

    Article  PubMed  CAS  Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 10:895–908

    Article  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Viebahn M, Doornbos R, Wernars K, Van Loon LC, Smit E, Bakker PAHM (2005) Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol 7:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Visca P, Ciervo A, Sanfilippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp J Gen Microbiol 139:1995–2001

    PubMed  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396

    Article  PubMed  CAS  Google Scholar 

  • Wei HL, Zhang LQ (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek 89:267–280

    Article  PubMed  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM, Cook RJ (1986) Increased growth of wheat by seed treatments with fluorescent pseudomonads and implications of Pythium control. Can J Plant Pathol 8:328–334

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004) Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens. Phytopathology 94:S108

    Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641

    PubMed  CAS  Google Scholar 

  • Wood DW, Gong FC, Daykin MM, Williams P, Pierson LS (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663–7670

    PubMed  CAS  Google Scholar 

  • Xu GW, Gross DC (1986) Selection of fluorescent pseudomonads antagonistic to Erwinia caratovora and suppressive of potato seed piece decay. Phytopathology 76:414–422

    Article  Google Scholar 

  • Yang HL, Sun XL, Song W, Wang YS, Cai MY (1999) Screening, identification and distribution of endophytic associative diazotrophs isolated from rice plants. Acta Bot Sin 41:927–931

    Google Scholar 

  • Young JM, Triggs CM (1994) Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902. J Appl Bacteriol 77:195–207

    PubMed  CAS  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, de Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microbial Ecol 51:375–393

    Article  Google Scholar 

  • Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. José Olivares for the critical reading of an earlier version of the manuscript, and for his interesting advices. We are also grateful to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado-Blanco, J., Bakker, P.A.H.M. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek 92, 367–389 (2007). https://doi.org/10.1007/s10482-007-9167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9167-1

Keywords

Navigation