Skip to main content

General Characteristics of Endophytes and Bioprospecting Potential of Endophytic Fungi

  • Chapter
  • First Online:
Advancements in Materials Science and Technology Led by Women

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 165))

  • 205 Accesses

Abstract

Endophytes are a group of microorganisms including fungi, actinomycetes, and bacteria that reside within plant tissues without causing apparent disease symptoms in host plants. These underexplored microorganisms are drawing attention as attractive sources of new compounds, due to their genetic diversity leading to structurally diverse secondary metabolites. In this regard, a balanced host–endophyte interaction plays a vital role in facilitating the endophytes to produce bioactive compounds along with mimicry of plant-based metabolites. Endophytic fungi are great resources of naturally derived drugs as they produce various groups of bioactive molecules including alkaloids, flavonoids, peptides, phenolics, quinines, steroids, and terpenoids. These compounds have been found to display broad-spectrum biological activities such as antimicrobial, antidiabetic, anticancer, anti-inflammatory, antioxidant, and immunomodulatory. In this review, endophytes, their interactions with host plants are discussed and their mechanism of non-pathogenicity are also highlighted. The review also focuses on the therapeutic applications of metabolites derived from plant-associated endophytic fungi. It can be concluded that endophytes are the repository of bioactive metabolites. Therefore, more studies should be conducted on bioprospecting novel compounds from these potential resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, McGaw LJ (2018) Bioprospecting of South African plants as a unique resource for bioactive endophytic microbes. Front Pharmacol 9:1–18

    Article  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7–8):483–495

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  Google Scholar 

  • Arora P, Wani ZA, Nalli Y et al (2016) Antimicrobial potential of Thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microb ecol 72(4):802–812

    Google Scholar 

  • Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. Plos One Biol 15(3):1–14

    Google Scholar 

  • Chen L, Zhang QY, Jia M et al (2016) Endophytic fungi with antitumor activities: their occurrence and anticancer compounds. Crit Rev Microbiol 42(3):454–473

    CAS  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P et al (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540

    Article  CAS  Google Scholar 

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimumsanctum Linn. PLoS ONE 10(11):1–25

    Article  Google Scholar 

  • Cui J, Guo T, Chao J et al (2016) Potential of the endophytic fungus Phialocephala fortinii Rac56 found in Rhodiola plants to produce salidroside and p-tyrosol. Mol 21(4):502

    Article  Google Scholar 

  • Danagoudar A, Joshi CG, Ravi SK et al (2018) Antioxidant and cytotoxic potential of endophytic fungi isolated from medicinal plant Tragia involucrata L. Pharmacognosy Res 10(2):188–194

    Article  CAS  Google Scholar 

  • Dhankhar S, Dhankhar S, Yadav JP (2013) Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem 9(4):624–632

    Article  CAS  Google Scholar 

  • Dhayanithy G, Subban K, Chelliah J (2019) Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol 19:1–14

    Article  Google Scholar 

  • Duan X, Xu F, Qin D et al (2019) Diversity and bioactivities of fungal endophytes from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. BMC Microbiol 19:1–14

    Article  Google Scholar 

  • El-Amrani M, Ebada SS, Gad HA et al (2016) Pestalotiopamide E and pestalotiopin B from an endophytic fungus Aureobasidium pullulans isolated from Aloe vera leaves. Phytochem Lett 18:95–98

    Article  CAS  Google Scholar 

  • Gagic M, Faville MJ, Zhang W et al (2018) Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Front Plant Sci 9:1–16

    Article  Google Scholar 

  • Govindappa M, Sadananda TS, Ramachandra YL et al (2015) In vitro and in vivo antidiabetic activity of lectin (N-acetylgalactosamine, 64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Intergr Obes Diabetes 1(1):11–19

    Google Scholar 

  • Guaadaoui A, Benaicha S, Elmajdoub N et al (2014) What is a bioactive compound? A combined definition fora preliminary consensus. Int J Nutr Food Sci 3(3):74–179

    Google Scholar 

  • Hammerschmidt L, Ola A, Mueller WE et al (2015) Two new metabolites from the endophytic fungus Xylaria sp. isolated from the medicinal plant Curcuma xanthorrhiza. Tetrahedron Lett 56(10):1193–1197

    Google Scholar 

  • Hamzah TNT, Lee SY, Hidayat A et al (2018) Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front Microbiol 9:1–17

    Article  Google Scholar 

  • Higgins KL, Arnold AE, Coley P et al (2014) Communities of fungal endophyte in tropical forest grasses: highly diverse host and habitat generalists characterized by strong spatial structure. Fungal Ecol 8(1):1–11

    Article  Google Scholar 

  • Indrianingsih AW, Tachibana S (2017) α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Sci Hum Wellness 6(2):88–95

    Google Scholar 

  • Jia M, Chen L, Xin H et al (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1–14

    Article  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR et al (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE 11(10):1–25

    Article  Google Scholar 

  • Khiralla A, Mohamed I, Thomas J et al (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8(9):701–704

    Article  CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR et al (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  Google Scholar 

  • Lee JC, Lobkovsky E, Pliam NB et al (1995) Subglutinol A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60(22):7076–7077

    Article  CAS  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37(7):1325–1334

    Article  Google Scholar 

  • Ma HY, Song YC, Mao YY et al (2006) Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med 72(05):387–392

    Article  CAS  Google Scholar 

  • Ma YM, Qiao K, Kong Y et al (2017) A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Nat Prod Res 31(8):951–958

    Article  CAS  Google Scholar 

  • Maehara S, Simanjuntak P, Kitamura C et al (2012) Bioproduction of Cinchona alkaloids by the endophytic fungus Diaporthe sp. associated with Cinchona ledgeriana. Chem Pharm Bull 60(10):1301–1304

    Google Scholar 

  • Meneses C, Gonçalves T, Alquéres S et al (2017) Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416:133–147

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Yousaf S et al (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50(2):249–262

    Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA et al (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  Google Scholar 

  • Nogueira-Lopez G, Greenwood DR, Middleditch M et al (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9:1–23

    Article  Google Scholar 

  • Padhi L, Mohanta YK, Panda SK (2013) Endophytic fungi with great promises: a review. J Adv Pharm Edu Res 3(3):152–170

    Google Scholar 

  • Park JH, Choi GJ, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15(1):112–117

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of the leaves, 1st edn. Springer, New York

    Google Scholar 

  • Pham JV, Yilma MA, Feliz A et al (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1–27

    Article  Google Scholar 

  • Pur S, Amna T, Khajuria A et al (2007) Immunomodulatory activity of an extract of the novel fungal endophyte Entrophospora infrequens isolated from Nothapodytes foetida (Wight) Sleumer. Acta Microbiol Imm H 54(3):237–260

    Article  Google Scholar 

  • Puri SK, Habbu PV, Kulkarni PV et al (2018) Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities—a review. Syst Rev Pharm 9(1):22–30

    Article  CAS  Google Scholar 

  • Qin JC, Zhang YM, Gao JM et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic Med Chem Lett 19(6):1572–1574

    Article  CAS  Google Scholar 

  • Rai M, Agarkar G (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42(3):428–438

    Article  CAS  Google Scholar 

  • Rajamanikyam M, Vadlapudi V, Amanchy R et al (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60:1–26

    Article  Google Scholar 

  • Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1):798–1079

    Article  Google Scholar 

  • Ren Y, Strobel GA, Graff JC et al (2008) Colutellin A, an immunosuppressive peptide from Colletotrichum dematium. Microbiology 154(7):1973–1979

    Article  CAS  Google Scholar 

  • Robertson-Albertyn S, Terrazas RA, Balbirnie K et al (2017) Root hair mutations displace the barley rhizosphere microbiota. Front Plant Sci 8:1–15

    Article  Google Scholar 

  • Santangelo JS, Turley NE, Johnson MT (2015) Fungal endophytes of Festuca rubra increase in frequency following longterm exclusion of rabbits. Botany 93(4):233–241

    Article  Google Scholar 

  • Santiago C, Fitchett C, Munro MH et al (2012) Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evid Based Complement Alternat Med 2012

    Google Scholar 

  • Sasse J, Martinoia E, Northen T (2017) Feed your friends: doplant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  Google Scholar 

  • Schulz B, Haas S, Junker C et al (2015) Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci 109(1):39–45

    Google Scholar 

  • Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:1–17

    Article  Google Scholar 

  • Shikano I, Rosa C, Tan CW et al (2017) Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu Rev Phytopathol 55:313–331

    Article  CAS  Google Scholar 

  • Siddaiah CN, Satyanarayana NR, Mudili V et al (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:1–18

    Article  Google Scholar 

  • Singh M, Kumar A, Singh R et al (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7(5):1–14

    Google Scholar 

  • Song YC, Huang WY, Sun C et al (2005) Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 28(3):506–509

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  CAS  Google Scholar 

  • Strobel GA (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4:1–19

    Article  Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  Google Scholar 

  • Sun WJ, Zhu HT, Zhang TY et al (2018) Two new alkaloids from Fusarium tricinctum SYPF 7082, an endophyte from the root of Panax notoginseng. Nat Prod Bioprospect 8(5):391–396

    Article  CAS  Google Scholar 

  • Tidke SA, Kumar AKL, Ramakrishna D et al (2017) Current understanding of endophytes: their relevance, importance, and industrial potentials. J Biotechnol Biochem 3(3):43–59

    Google Scholar 

  • Toghueo RMK (2020) Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 11(1):1–21

    Article  CAS  Google Scholar 

  • Toghueo RMK, Boyom FF (2019) Endophytic fungi from Terminalia species: a comprehensive review. J Fungi 5(2):1–20

    Google Scholar 

  • Wang WX, Lei X, Ai HL et al (2019) Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans. Org Lett 21(4):1108–1111

    Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T et al (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73(2):274–276

    Article  Google Scholar 

  • Wu SH, Huang R, Miao CP et al (2013) Two new steroids from an endophytic fungus Phomopsis sp. Chem Biodivers 10(7):1276–1283

    Article  CAS  Google Scholar 

  • Yan JF, Broughton SJ, Yang SL et al (2015) Do endophytic fungi grow through their hosts systemically? Fungal Ecol 13:53–59

    Article  Google Scholar 

  • Yao YQ, Lan F, Qiao YM et al (2017) Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. Microbiol Open 6(3):1–17

    Article  Google Scholar 

  • Zhang QW, Lin LG, Ye WC (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:1–26

    Article  Google Scholar 

  • Zhao J, Fu Y, Luo M et al (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agricul Food Chem 60(17):4314–4319

    Google Scholar 

  • Zhejian W, Zhao M, Lili W et al (2015) Active anti-acetylcholinesterase component of secondary metabolites produced by the endophytic fungi of Huperzia serrata. Electron J Biotechnol 18(6):399–405

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Universiti Kuala Lumpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Yenn Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abu Taher, M., Tong, WY., Leong, C.R., Ab Rashid, S., Tan, WN. (2023). General Characteristics of Endophytes and Bioprospecting Potential of Endophytic Fungi. In: Ismail, A., Nur Zulkipli, F., Husin, H.S., Öchsner, A. (eds) Advancements in Materials Science and Technology Led by Women. Advanced Structured Materials, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-031-21959-7_4

Download citation

Publish with us

Policies and ethics